For a
standard normal distribution, the probability of obtaining a z value
of less than 1.6 is |
|||||||||||||||
1.6 |
|||||||||||||||
0.945201 |
|||||||||||||||
The
assembly time for a product is uniformly distributed between 6 and 10
minutes. The probability of assembling the product in 7 minutes or more is
_____. |
|||||||||||||||
10 |
10 |
||||||||||||||
6 |
7 |
||||||||||||||
4 |
3 |
0.75 |
|||||||||||||
Assume z is
a standard normal random variable. Then P(–1.96 ≤ z ≤
–1.6) equals _____. |
|||||||||||||||
-1.96 |
0.024998 |
||||||||||||||
-1.5 |
0.066807 |
0.041809 |
|||||||||||||
Consider
the following. |
|||||||||||||||
f(x)
= (1/19) e -x/19 x ≥
0 |
|||||||||||||||
The
probability that x is between 7 and 9 is |
|||||||||||||||
19 |
|||||||||||||||
0.05 |
|||||||||||||||
7 |
0.308174 |
||||||||||||||
9 |
0.377296 |
0.069122 |
|||||||||||||
The
starting salaries of individuals with an MBA degree are normally distributed
with a mean of $40,000 and a standard deviation of $5,000. |
|||||||||||||||
Refer
to Exhibit 6-4. What is the probability that a randomly selected individual
with an MBA degree will get a starting salary of at least $30,000? |
|||||||||||||||
40000 |
|||||||||||||||
5000 |
-2 |
0.02275 |
|||||||||||||
30000 |
|||||||||||||||
P(Z>-2 |
0.97725 |
||||||||||||||
Consider
the following. |
|||||||||||||||
f(x)
= (1/8) e -x/8 x ≥
0 |
|||||||||||||||
The
mean of x is _____. |
|||||||||||||||
8 |
|||||||||||||||
Suppose x is
a normally distributed random variable with a mean of 5 and a variance of 4.
The probability that x is greater than 10.52 is _____. |
|||||||||||||||
mean |
5 |
||||||||||||||
variance |
4 |
||||||||||||||
10.52 |
|||||||||||||||
2.76 |
0.99711 |
||||||||||||||
P(Z>2.76) |
0.0029 |
||||||||||||||
Consider
the continuous random variable x, which has a uniform
distribution over the interval from 20 to 28. |
|||||||||||||||
Refer
to Exhibit 6-1. The probability that x will take on a value
between 21 and 25 is_____. |
|||||||||||||||
20 |
21 |
||||||||||||||
28 |
25 |
||||||||||||||
8 |
4 |
0.5 |
|||||||||||||
Exhibit
6-2 |
|||||||||||||||
The
travel time for a college student traveling between her home and her college
is uniformly distributed between 40 and 90 minutes. |
|||||||||||||||
Refer
to Exhibit 6-2. The probability that she will finish her trip in 80 minutes
or less is _____. |
|||||||||||||||
40 |
40 |
||||||||||||||
90 |
80 |
||||||||||||||
50 |
40 |
0.8 |
|||||||||||||
The
travel time for a college student traveling between her home and her college
is uniformly distributed between 50 and 80 minutes. The probability that she
will finish her trip in 60 minutes or less is _____. |
|||||||||||||||
50 |
50 |
||||||||||||||
80 |
60 |
||||||||||||||
30 |
10 |
0.333333 |
|||||||||||||
Given
that z is a standard normal random variable, what is the
value of z if the area to the right of z is
.1112? |
|||||||||||||||
0 |
|||||||||||||||
0.5 |
|||||||||||||||
The
weight of items produced by a machine is normally distributed with a mean of
9 ounces and a standard deviation of 3 ounces. What is the probability that a
randomly selected item will weigh more than 12 ounces? |
|||||||||||||||
mean |
9 |
||||||||||||||
variance |
3 |
||||||||||||||
12 |
|||||||||||||||
1 |
0.841345 |
||||||||||||||
P(Z>2.76) |
0.1587 |
||||||||||||||
The
assembly time for a product is uniformly distributed between 6 and 8 minutes.
The probability density function has what value in the interval between 6 and
8? |
|||||||||||||||
6 |
|||||||||||||||
8 |
|||||||||||||||
0.5 |
|||||||||||||||
Consider
the continuous random variable x, which has a uniform
distribution over the interval from 40 to 48. The variance of x is
approximately _____. |
|||||||||||||||
40 |
|||||||||||||||
48 |
8 |
64 |
|||||||||||||
5.333333 |
|||||||||||||||
The
life expectancy of a particular brand of tire is normally distributed with a
mean of 30,000 and a standard deviation of 6,000 miles. What percentage of
tires will have a life of 21,600 to 38,400 miles? |
|||||||||||||||
mean |
30000 |
mean |
30000 |
||||||||||||
variance |
6000 |
variance |
6000 |
||||||||||||
21600 |
38400 |
||||||||||||||
-1.4 |
0.080757 |
1.4 |
0.919243 |
83.85% |
|||||||||||
P(Z>2.76) |
0.9192 |
P(Z>2.76) |
0.0808 |
||||||||||||
Exhibit
6-5 |
|||||||||||||||
The
weight of items produced by a machine is normally distributed with a mean of
8 ounces and a standard deviation of 2 ounces. |
|||||||||||||||
Refer
to Exhibit 6-5. What is the probability that a randomly selected item will
weigh between 11 and 12 ounces? |
|||||||||||||||
mean |
8 |
mean |
8 |
||||||||||||
variance |
2 |
variance |
2 |
||||||||||||
11 |
12 |
||||||||||||||
1.5 |
0.933193 |
2 |
0.97725 |
0.0441 |
|||||||||||
P(Z>2.76) |
0.0668 |
P(Z>2.76) |
0.0228 |
0.9104 |
|||||||||||
Assume z is
a standard normal random variable. Then P(z ≥ 2.11)
equals _____. |
|||||||||||||||
2.11 |
0.982571 |
||||||||||||||
0.017429 |
|||||||||||||||
Exhibit
6-7 |
|||||||||||||||
f(x)
= (1/10) e-x/10 x ≥
0 |
|||||||||||||||
Refer
to Exhibit 6-7. The probability that x is between 3 and 6 is
_____. |
|||||||||||||||
10 |
|||||||||||||||
0.10 |
|||||||||||||||
3 |
0.259182 |
||||||||||||||
6 |
0.451188 |
0.192007 |
|||||||||||||
The
assembly time for a product is uniformly distributed between 6 and 11
minutes. The probability of assembling the product in 7 to 9 minutes is
_____. |
|||||||||||||||
6 |
7 |
||||||||||||||
11 |
9 |
||||||||||||||
5 |
2 |
0.4 |
|||||||||||||
Exhibit
6-4 |
|||||||||||||||
The
starting salaries of individuals with an MBA degree are normally distributed
with a mean of $40,000 and a standard deviation of $5,000. |
|||||||||||||||
Refer
to Exhibit 6-4. What percentage of MBAs will have starting salaries of
$34,000 to $46,000? |
|||||||||||||||
mean |
40000 |
mean |
40000 |
||||||||||||
STD |
5000 |
STD |
5000 |
||||||||||||
34000 |
46000 |
||||||||||||||
-1.2 |
0.11507 |
1.2 |
0.88493 |
0.7699 |
76.99% |
||||||||||
P(Z>2.76) |
0.8849 |
P(Z>2.76) |
0.1151 |
0.0000 |
|||||||||||
Assume z is
a standard normal random variable. What is the value of z if
the area between –z and z is 0.8557? |
|||||||||||||||
0.8611 |
|||||||||||||||
1.8611 |
|||||||||||||||
0.93055 |
1.48 |
||||||||||||||
Given
that z is a standard normal random variable, what is the
value of z if the area to the left of z is
0.9370? |
|||||||||||||||
P(Z<z) = |
0.937 |
1.530068 |
|||||||||||||
right |
0.063 |
-1.53007 |
|||||||||||||
The
life expectancy of a particular brand of tire is normally distributed with a
mean of 30,000 and a standard deviation of 6,000 miles. What is the
probability that a randomly selected tire will have a life of at least 24,000
miles? |
|||||||||||||||
mean |
30000 |
||||||||||||||
STD |
6000 |
||||||||||||||
24000 |
|
||||||||||||||
-1 |
0.158655 |
||||||||||||||
P(Z>-1) |
0.8413 |
||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
Exhibit
6-2 |
|||||||||||||||
|
|||||||||||||||
Refer
to Exhibit 6-2. The probability that her trip will take longer than 60
minutes is _____. |
|||||||||||||||
40 |
40 |
||||||||||||||
90 |
60 |
||||||||||||||
50 |
20 |
0.4 |
|||||||||||||
The
travel time for a college student traveling between her home and her college
is uniformly distributed between 30 and 70 minutes. The probability that her
trip will take longer than 50 minutes is _____. |
|||||||||||||||
30 |
30 |
||||||||||||||
70 |
50 |
||||||||||||||
40 |
20 |
0.5 |
|||||||||||||
Consider
the following. |
|||||||||||||||
f(x)
= (1/18) e -x/18 x ≥
0 |
|||||||||||||||
The
probability that x is between 7 and 9 is _____. |
|||||||||||||||
18 |
|||||||||||||||
0.06 |
|||||||||||||||
7 |
0.32219 |
||||||||||||||
9 |
0.393469 |
0.071279 |
|||||||||||||
The
assembly time for a product is uniformly distributed between 1 and 7 minutes.
The standard deviation of assembly time (in minutes) is approximately _____. |
|||||||||||||||
1 |
|||||||||||||||
7 |
|||||||||||||||
3 |
|||||||||||||||
The
weight of football players is normally distributed with a mean of 215 pounds
and a standard deviation of 20 pounds. What percent of players weigh between
205 and 225 pounds? |
|||||||||||||||
mean |
215 |
mean |
215 |
||||||||||||
STD |
20 |
STD |
20 |
||||||||||||
205 |
225 |
||||||||||||||
-0.5 |
0.308538 |
0.5 |
0.691462 |
0.3829 |
38.29% |
||||||||||
P(Z>2.76) |
0.6915 |
P(Z>2.76) |
0.3085 |
0.0000 |
|||||||||||
The
assembly time for a product is uniformly distributed between 6 and 10
minutes. The probability of assembling the product in 7 to 9 minutes is
_____. |
|||||||||||||||
6 |
7 |
||||||||||||||
10 |
9 |
||||||||||||||
4 |
2 |
0.5 |
|||||||||||||
The
weight of items produced by a machine is normally distributed with a mean of
9 ounces and a standard deviation of 2 ounces. What is the probability that a
randomly selected item weighs exactly 9 ounces? |
|||||||||||||||
mean |
9 |
||||||||||||||
variance |
2 |
||||||||||||||
9 |
|||||||||||||||
0 |
0.5 |
||||||||||||||
P(Z>2.76) |
0.5000 |
||||||||||||||
The
starting salaries of individuals with an MBA degree are normally distributed
with a mean of $35,000 and a standard deviation of $8,000. What is the
probability that a randomly selected individual with an MBA degree will get a
starting salary of at least $43,800? |
|||||||||||||||
mean |
35000 |
||||||||||||||
STD |
8000 |
||||||||||||||
43800 |
|||||||||||||||
1.1 |
0.864334 |
||||||||||||||
P(Z>-1) |
0.1357 |
||||||||||||||
Assume z is
a standard normal random variable. What is the value of z if
the area to the right of z is 0.9911? |
|||||||||||||||
P(Z<z) = |
0.0089 |
-2.36975 |
|||||||||||||
right |
0.9911 |
2.369752 |
|||||||||||||
Suppose x is
a normally distributed random variable with a mean of 5 and a variance of 4.
The probability that x is greater than 10.52 is _____. |
|||||||||||||||
mean |
5 |
||||||||||||||
STD |
4 |
||||||||||||||
10.52 |
|||||||||||||||
1.38 |
0.916207 |
||||||||||||||
P(Z>-1) |
0.0838 |
||||||||||||||
The
travel time for a college student traveling between her home and her college
is uniformly distributed between 60 and 90 minutes. The probability that she
will finish her trip in 80 minutes or less is _____. |
|||||||||||||||
60 |
60 |
||||||||||||||
90 |
80 |
||||||||||||||
30 |
20 |
0.666667 |
|||||||||||||
The
weight of football players is normally distributed with a mean of 220 pounds
and a standard deviation of 20 pounds. What is the minimum weight of the
middle 95% of the players? |
|||||||||||||||
220 |
|||||||||||||||
20 |
|||||||||||||||
0.95 |
|||||||||||||||
1.95 |
|||||||||||||||
0.975 |
1.959964 |
||||||||||||||
Value = |
259.2 |
Comments
Post a Comment