Skip to main content

BA6933 All Quize's Week 4 Chapter's( 10, 11, 12)

Today

Five Years Ago

x̄

84.00

86.00

σ 2

119.5

52

n

53

49

The point estimate for the difference between the means of the two populations (Today – Five Years Ago) is _____.

-2.00

An insurance company selected samples of clients under 18 years of age and over 18 and recorded the number of accidents they had in the previous year. The results are shown below.

Under Age 18

Over Age 18

n1 = 600

n2 = 500

Number of accidents = 228

Number of accidents = 145

600

500

1100

228

145

373

0.339090909

A statistics teacher wants to see if there is any difference in the abilities of students enrolled in statistics today and those enrolled five years ago. Final examination scores from a random sample of students enrolled today and from a random sample of students enrolled five years ago were selected. You are given the following information.

Today

Five Years Ago

x

83

89

σ2

79.5

122.5

n

53

49

The p-value for determining if there is a difference between the two population means

X

83

89

n

53

49

Var

79.5

122.5

1.5

2.5

SE

2

Test Statastic

-3

0.001349898

In order to determine whether or not there is a significant difference between the hourly wages of two companies, the following data have been accumulated.

Company 1

Company 2

n1 = 80

n2 = 60

1 = $10.80

2 = $10.00

σ1 = $2.00

σ2 = $1.50

Refer to Exhibit 10-13. The test statistic has a value of _____.

a. 1.96

b. 1.645

x

10.8

10

c. 2.7

n

80

60

d. .80

var

4

2.25

0.05

0.0375

Std

2

1.5

SE

0.295803989

Test Statastic

2.704493615

0.996579571

The following information was obtained from matched samples.

Individual

Method 1

Method 2

1

7

5

2

5

9

3

6

8

4

7

7

5

5

6

6

7

-1

Refer to Exhibit 10-5. The point estimate for the mean of the population of differences (Method 1 – Method 2) is _____.

a. –1

b. 2

c. 0

d. 1

A statistics teacher wants to see if there is any difference in the abilities of students enrolled in statistics today and those enrolled five years ago. Final examination scores from a random sample of students enrolled today and from a random sample of students enrolled five years ago were selected. You are given the following information.

Today

Five Years Ago

x̄

82

88

σ 2

112.5

54

n

45

36

Refer to Exhibit 10-3. The standard error of x̄ 1 - x̄ 2 is _____.

a. 4

b. 12.9

x

82

88

c. 9.3

n

45

36

d. 2

var

112.5

54

2.5

1.5

Std

79.5

122.5

SE

2

Test Statastic

-3

0.00135

In order to determine whether or not there is a significant difference between the hourly wages of two companies, the following data have been accumulated.

Company 1

Company 2

n1 = 90

n2 = 70

x1 = $11.60

x2 = $11.00

𝜎1 = $2.00

𝜎2 = $1.60

x

11.7

11

The p-value is _____.

n

90

70

var

4

2.25

0.044444444

0.032143

Std

2

1.5

SE

0.276744108

Test Statastic

2.529412474

0.9943

0.8400

-1.994287317

x

45

42

n

10

12

var

85

90

8.5

7.5

Std

2

1.5

SE

4

Refer to Exhibit 10-4. The standard error of 1 - 2 is _____.

Test Statastic

0.75

0.7734

0.7803

-1.773372648

In order to determine whether or not there is a significant difference between the hourly wages of two companies, two independent random samples were selected and the following statistics were calculated.

Company A

Company B

Sample size

80

50

Sample mean

$9.75

$9.25

Population standard deviation

$1.00

$0.90

x

9.75

9.25

n

80

50

var

85

90

1.0625

1.8

Std

1

0.9

SE

1.691892432

Test Statastic

0.295527062

0.6162

0.7311

-1.616204359

At a significance level of 0.05, the null hypothesis _____.

The results of a recent poll on the preference of shoppers regarding two products are shown below.

Product

Shoppers Surveyed

Shoppers Favoring

This Product

A

800

560

B

900

612

Refer to Exhibit 10-10. At 95% confidence, the margin of error is _____.

n

p

1-p

SE

a. 52

800

560

n1

0.7

0.3

0.0002625

0.000504278

0.022456

b. .044

900

612

n2

0.68

0.32

0.000241778

c. .064

ME

d. .0225

1.96

0.044014

The management of a department store is interested in estimating the difference between the mean credit purchases of customers using the store's credit card versus those customers using a national major credit card. You are given the following information. Assume the samples were selected randomly.

Store's Card

Major Credit Card

Sample size

64

49

Sample mean

$120

$115

Population standard deviation

$15

$7

n

64

n2

49

x1

120

x2

115

At 95% confidence, the margin of error is _____.

std

15

std

7

a. 1.96

b. 4.16

3.515625

1

c. 2.125

4.515625

d. 5

2.125

1.96

4.165

The results of a recent poll on the preference of shoppers regarding two products are shown below.

Product

Shoppers Surveyed

Shoppers Favoring

This Product

A

800

560

B

900

612

n

p

1-p

SE

800

560

n1

0.7

0.3

0.0002625

0.000504

0.022456

900

612

n2

0.68

0.32

0.000241778

Refer to Exhibit 10-10. The point estimate for the difference between the two population proportions in favor of this product (Product A – Product B) is _____.

ME

a. 100

p1-p2

0.02

1.96

0.044014

b. 52

c. .02

d. .44

In order to estimate the difference between the average hourly wages of employees of two branches of a department store, two independent random samples were selected and the following statistics were calculated.

Downtown Store

North Mall Store

Sample size

36

30

Sample mean

$12

$10

Sample standard deviation

$3

$2

A 95% interval estimate for the difference between the two population means (Downtown Store – North Mall Store) is _____.

a. $0.79 to $3.21

b. $0.97 to $3.03

c. $1.38 to $2.62

d. $0.76 to $3.24

n

36

n2

30

x1

12

x2

10

std

3

std

2

Diff

2

0.25

0.133333

0.383333333

0.786487

0.619139187

1.96

1.213512807

3.213513

The daily production rates for a random sample of workers before and after a training program are shown below.

Worker

Before

After

1

20

22

2

25

23

3

27

27

4

23

20

5

22

25

6

20

19

7

17

18

22

22

Refer to Exhibit 10-2. The point estimate for the mean of the population of difference is

n

64

n2

49

x1

120

x2

110

std

3

std

2

Diff

10

0.140625

0.081633

0.222257653

9.075973

0.471442099

1.96

0.924026515

10.92403

n

p

1-p

SE

600

222

n1

0.37

0.63

0.000389

0.0007733

0.027808272

500

130

n2

0.26

0.74

0.000385

ME

p1-p2

0.11

1.96

0.054504213

3.9556575

Pvalue

1.0000

0.8413

-1.9999618

Inner City Store

Suburban Store

Sample Size

36

49

Sampe Mean

40

35

Stdev

9

10

the point estimate of the difference between the mean ages of the two populations is x1 - x2

5

Using 95% confidence and za/2 5 z.025 5 1.96

1.96

Standard Error

2.071428571

Mean Error

4.06

Confidence Interval

0.94

9.06

Test Statistic

2.413793103

Inner City Store

Suburban Store

Sample Size

30

40

Sampe Mean

82

78

Stdev

10

10

the point estimate of the difference between the mean ages of the two populations is x1 - x2

4

Using 95% confidence and za/2 5 z.025 5 1.96

1.96

Standard Error

2.415229458

Mean Error

4.733849737

Confidence Interval

-0.73385

8.7338497

Test Statistic

1.656157342

Pvalue

0.95115502

0.04884498

As it is in upper tail

As it is two tail test

0.0977

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

28

22

22500

15625

Sampe Mean

1025

910

803.5714

710.2273

645727.0408

504422.7789

Stdev

150

125

1513.799

27

21

the point estimate of the difference between the mean ages of the two populations is x1 - x2

115

2291587

0.037037037

0.047619048

Using 95% confidence and Ta/2 5 t.025

2.012

Signification

95%

23915.81633

24020.13233

Standard Error

38.90756612

5%

0.025

47935.94866

Mean Error

78.27

Confidence Interval

DF=

47.8

36.7

193.27193

Test Statistic

2.955723307

Pvalue

0.997567803

0.002432197

As it is in upper tail

As it is two tail test

0.0049

Worker

time

Time

Caclulating d

di-d

(di-d)^2

1

6

5.4

0.6

0.3

0.09

2

5

5.2

-0.2

-0.5

0.25

3

7

6.5

0.5

0.2

0.04

4

6.2

5.9

0.3

0

0

5

6

6

0

-0.3

0.09

6

6.4

5.8

0.6

0.3

0.09

ud=

0

We get this from hypothesis

d=

0.3

0.56

5

0.112

Sd =

0.334664

Confidence Interval

DF=

5.0

Mean Error

0.1366

-0.05

0.65

Using 95% confidence and Ta/2 5 t.025

2.571

Signification

95%

0.35

5%

0.025

test Stattistic

2.20

Pvalue

0.960242

0.039758

As it is in upper tail

As it is two tail test

0.0795

Proportion

Inner City Store

Suburban Store

p(1-p)

p(1-p)

Sample Size

250

300

0.1204

0.0819

Errors

35

27

0.000482

0.000273

P

0.14

0.09

0.000755

0.004

1-P

0.86

0.91

0.003333333

Stdev

150

125

0.02747

0.007333333

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.05

0.045184

Pooled Estimator

0.112727273

1-p

0.887273

Using 95% confidence and Za/2 5 t.025

1.645

Signification

90%

Standard Error

0.027469984

10%

0.05

0.027470

Confidence Interval

Mean Error

0.045184102

0.005

0.095

Test Statistic

1.846189281

Pvalue

0.967567637

0.032432363

As it is in upper tail

As it is two tail test

0.0649

Proportion

Inner City Store

Suburban Store

p(1-p)

p(1-p)

Sample Size

700

800

0.16

0.1771

Errors

560

616

0.000229

0.000221

P

0.8

0.77

0.00045

0.001428571

1-P

0.2

0.23

0.00125

Stdev

150

125

0.021212

0.002678571

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.03

0.041575

Pooled Estimator

0.784

1-p

0.216

Using 95% confidence and Za/2 5 t.025

1.960

Signification

95%

Standard Error

0.021211941

5%

0.025

Mean Error

0.041575

Confidence Interval

-0.012

0.072

Test Statistic

1.408590425

Pvalue

0.920521844

0.079478156

As it is in upper tail

As it is two tail test

0.1590

Proportion

Inner City Store

Suburban Store

p(1-p)

p(1-p)

Sample Size

700

800

0.2491

0.25

Errors

329

400

0.000356

0.000313

P

0.47

0.5

0.000668

0.001428571

1-P

0.53

0.5

0.00125

Stdev

150

125

0.025853

0.002678571

the point estimate of the difference between the mean ages of the two populations is x1 - x2

-0.03

0.05067

Pooled Estimator

0.486

1-p

0.514

Using 95% confidence and Za/2 5 t.025

1.960

Signification

95%

Standard Error

0.025852604

5%

0.025

Mean Error

0.050670

Confidence Interval

-0.081

0.021

Test Statistic

-1.159764857

Pvalue

0.123072278

0.876927722

As it is in upper tail

As it is two tail test

1.7539

Inner City Store

Suburban Store

Sample Size

14

16

Sampe Mean

47

44

Stdev

7.937253933

13.56465997

63

184

the point estimate of the difference between the mean ages of the two populations is x1 - x2

3

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

4

5%

0.025

Mean Error

7.839855938

Confidence Interval

-4.83986

10.839856

Test Statistic

0.75

Pvalue

0.773372648

0.226627352

As it is in upper tail

As it is two tail test

0.4533

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

14

16

63

184

Sampe Mean

47

44

4.5

11.5

20.25

132.25

Stdev

7.937253933

13.56465997

16

13

15

63

184

the point estimate of the difference between the mean ages of the two populations is x1 - x2

3

256

0.076923077

0.066666667

Using 95% confidence and Ta/2 5 t.025

2.064

Signification

95%

1.557692308

8.816666667

Standard Error

4

5%

0.025

10.37435897

Mean Error

8.26

Confidence Interval

DF=

24.7

-5.3

11.256

Test Statistic

0.75

Pvalue

0.769727818

0.230272182

As it is in upper tail

As it is two tail test

0.4605

Inner City Store

Suburban Store

Sample Size

64

49

Sampe Mean

140

125

Stdev

10

8

63

184

the point estimate of the difference between the mean ages of the two populations is x1 - x2

15

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

1.693700814

5%

0.025

Mean Error

3.32

Confidence Interval

11.68041

18.319593

Test Statistic

8.856345744

Pvalue

1

0

As it is in upper tail

As it is two tail test

0.0000

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

64

49

100

64

Sampe Mean

140

125

1.5625

1.306122

2.44140625

1.705955852

Stdev

10

8

2.868622

63

48

63

184

the point estimate of the difference between the mean ages of the two populations is x1 - x2

15

8.228995

0.015873016

0.020833333

Using 95% confidence and Ta/2 5 t.025

1.982

Signification

95%

0.03875248

0.035540747

Standard Error

1.693700814

5%

0.025

0.074293227

Mean Error

3.36

Confidence Interval

DF=

110.8

11.6

18.357

Test Statistic

8.856345744

Pvalue

1

8.10463E-15

As it is in upper tail

As it is two tail test

0.0000

Independent simple random samples are selected to test the difference between the means of two populations whose standard deviations are not known. We are unwilling to assume that the population variances are equal. The sample sizes are n1 = 24 and n2 = 32. The correct distribution to use is the t distribution with how many degrees of freedom?

24

32

DF

54

Inner City Store

Suburban Store

Sample Size

64

25

Sampe Mean

46

44

Stdev

11.3137085

7.745966692

128

60

the point estimate of the difference between the mean ages of the two populations is x1 - x2

2

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

2.097617696

5%

0.025

Mean Error

4.11

Confidence Interval

-2.11126

6.1112551

Test Statistic

0.953462589

Pvalue

0.829822129

0.170177871

As it is in upper tail

As it is two tail test

0.3404

Individual

Method 1

Method 2

1

8

6

2

6

10

3

4

10

4

9

9

5

3

5

6

8

point estimate

-2

Worker

Before

After

1

20

22

2

25

23

3

27

27

4

23

20

5

22

25

6

20

19

7

17

18

22

22

point estimate

0

Refer to Exhibit 10-2. The point estimate for the mean of the population of difference is

Inner City Store

Suburban Store

Sample Size

64

36

Sampe Mean

44

41

Stdev

11.3137085

8.485281374

128

72

the point estimate of the difference between the mean ages of the two populations is x1 - x2

3

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

2

5%

0.025

Mean Error

3.92

Confidence Interval

-0.91993

6.919928

Test Statistic

1.5

Pvalue

0.933192799

0.066807201

As it is in upper tail

As it is two tail test

0.1336

Inner City Store

Suburban Store

Sample Size

45

36

Sampe Mean

82

88

Stdev

10.60660172

7.348469228

112.5

54

the point estimate of the difference between the mean ages of the two populations is x1 - x2

-6

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

2

5%

0.025

Mean Error

3.92

Confidence Interval

-9.91993

-2.080072

Test Statistic

-3

Pvalue

0.001349898

0.998650102

As it is in upper tail

As it is two tail test

1.9973

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

64

49

100

64

Sampe Mean

140

125

1.5625

1.306122

2.44140625

1.705955852

Stdev

10

8

2.868622

63

48

63

184

the point estimate of the difference between the mean ages of the two populations is x1 - x2

15

8.228995

0.015873016

0.020833333

Using 95% confidence and Ta/2 5 t.025

1.982

Signification

95%

0.03875248

0.035540747

Standard Error

1.693700814

5%

0.025

0.074293227

Mean Error

3.36

Confidence Interval

DF=

110.8

11.6

18.357

Test Statistic

8.856345744

Pvalue

1

8.10463E-15

As it is in upper tail

As it is two tail test

0.0000

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

90

70

9

6.76

Sampe Mean

12.9

12

0.1

0.096571

0.01

0.009326041

Stdev

3

2.6

0.196571

89

69

63

184

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.9

0.03864

0.011235955

0.014492754

Using 95% confidence and Ta/2 5 t.025

1.975

Signification

95%

0.00011236

0.00013516

Standard Error

0.443363766

5%

0.025

0.00024752

Mean Error

0.88

Confidence Interval

DF=

156.1

0.0

1.776

Test Statistic

2.029935845

Pvalue

0.977968823

0.022031177

As it is in upper tail

As it is two tail test

0.0441

Inner City Store

Suburban Store

Sample Size

90

70

Sampe Mean

12.9

12

Stdev

3

2.6

112.5

54

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.9

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

0.443363766

5%

0.025

Mean Error

0.87

Confidence Interval

0.031023

1.768977

Test Statistic

2.029935845

Pvalue

0.97881847

0.02118153

As it is in upper tail

As it is two tail test

0.0424

Worker

time

Time

Caclulating d

di-d

(di-d)^2

1

18

20

-2

-2.3

5.29

2

23

21

2

1.7

2.89

3

25

25

0

-0.3

0.09

4

21

18

3

2.7

7.29

5

20

23

-3

-3.3

10.89

6

18

17

1

0.7

0.49

ud=

0

We get this from hypothesis

7

15

16

-1

-1.3

1.69

d=

0

28.63

6

4.771667

Sd =

2.184414

Confidence Interval

DF=

6.0

Mean Error

0.8918

-2.18

2.18

Using 95% confidence and Ta/2 5 t.025

2.447

Signification

95%

2.18

5%

0.025

test Stattistic

0.00

Pvalue

0.5

0.5

As it is in upper tail

As it is two tail test

1.0000

Proportion

Inner City Store

Suburban Store

p(1-p)

p(1-p)

Sample Size

700

800

0.2475

0.25

Errors

315

400

0.000354

0.000313

P

0.45

0.5

0.000666

0.001428571

1-P

0.55

0.5

0.00125

Stdev

150

125

0.025808

0.002678571

the point estimate of the difference between the mean ages of the two populations is x1 - x2

-0.05

0.050583

Pooled Estimator

0.476666667

1-p

0.523333

Using 95% confidence and Za/2 5 t.025

1.960

Signification

95%

Standard Error

0.02580836

5%

0.025

Mean Error

0.050583

Confidence Interval

-0.101

0.001

Test Statistic

-1.934290942

Pvalue

0.026538683

0.973461317

As it is in upper tail

As it is two tail test

1.9469

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

64

25

128

50

Sampe Mean

49

42

2

2

4

4

Stdev

11.3137085

7.071067812

4

63

24

128

50

the point estimate of the difference between the mean ages of the two populations is x1 - x2

7

16

0.015873016

0.041666667

Using 95% confidence and Ta/2 5 t.025

1.995

Signification

95%

0.063492063

0.166666667

Standard Error

2

5%

0.025

0.23015873

Mean Error

3.99

Confidence Interval

DF=

69.5

3.0

10.990

Test Statistic

3.5

Pvalue

0.999590125

0.000409875

As it is in upper tail

As it is two tail test

0.0008

Worker

time

Time

Caclulating d

di-d

(di-d)^2

1

5

6

-1

-1.3

1.69

2

3

7

-4

-4.3

18.49

3

8

7

1

0.7

0.49

4

8

8

0

-0.3

0.09

5

6

7

-1

-1.3

1.69

d=

-1

22.45

4

5.6125

Sd =

2.369072

Confidence Interval

DF=

4.0

Mean Error

1.0595

-3.94

1.94

Using 95% confidence and Ta/2 5 t.025

2.776

Signification

95%

2.94

5%

0.025

test Stattistic

-0.94

Pvalue

0.199343

0.800657

As it is in upper tail

As it is two tail test

1.6013

Inner City Store

Suburban Store

Sample Size

49

25

Sampe Mean

46

43

Stdev

9.899494937

7.071067812

98

50

the point estimate of the difference between the mean ages of the two populations is x1 - x2

3

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

2

5%

0.025

Mean Error

3.92

Confidence Interval

-0.91993

6.919928

Test Statistic

1.5

Pvalue

0.933192799

0.066807201

As it is in upper tail

As it is two tail test

0.1336

Worker

time

Time

Caclulating d

di-d

(di-d)^2

1

21

23

-2

-2.3

5.29

2

26

24

2

1.7

2.89

3

28

28

0

-0.3

0.09

4

24

21

3

2.7

7.29

5

23

26

-3

-3.3

10.89

6

21

20

1

0.7

0.49

ud=

0

We get this from hypothesis

7

18

19

-1

-1.3

1.69

d=

0

28.63

6

4.771667

Sd =

2.184414

Confidence Interval

DF=

6.0

Mean Error

0.8918

-2.18

2.18

Using 95% confidence and Ta/2 5 t.025

2.447

Signification

95%

2.18

5%

0.025

test Stattistic

0.00

Pvalue

0.5

0.5

As it is in upper tail

As it is two tail test

1.0000

Proportion

Inner City Store

Suburban Store

p(1-p)

p(1-p)

Sample Size

700

800

0.24

0.2451

Errors

420

456

0.000343

0.000306

P

0.6

0.57

0.000649

0.001428571

1-P

0.4

0.43

0.00125

Stdev

150

125

0.02548

0.002678571

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.03

0.04994

Pooled Estimator

0.584

1-p

0.416

Using 95% confidence and Za/2 5 t.025

1.960

Signification

95%

Standard Error

0.025480034

5%

0.025

Mean Error

0.049940

Confidence Interval

-0.020

0.080

Test Statistic

1.176024988

Pvalue

0.880207555

0.119792445

As it is in upper tail

As it is two tail test

0.2396

Inner City Store

Suburban Store

Sample Size

80

60

Sampe Mean

10.8

10

Stdev

2

1.5

98

50

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.8

Using 95% confidence and za/2 5 z.025 5 1.96

1.960

Signification

95%

Standard Error

0.295803989

5%

0.025

Mean Error

0.58

Confidence Interval

0.220235

1.3797652

Test Statistic

2.704493615

Pvalue

0.996579571

0.003420429

As it is in upper tail

As it is two tail test

0.0068

Independent

Inner City Store

Suburban Store

S1^2

S2^2

Sample Size

80

60

4

2.25

Sampe Mean

10.8

10

0.05

0.0375

0.0025

0.00140625

Stdev

2

1.5

0.0875

79

59

128

50

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.8

0.007656

0.012658228

0.016949153

Using 95% confidence and Ta/2 5 t.025

1.977

Signification

95%

3.16456E-05

2.38347E-05

Standard Error

0.295803989

5%

0.025

5.54803E-05

Mean Error

0.58

Confidence Interval

DF=

138.0

0.2

1.385

Test Statistic

2.704493615

Pvalue

0.996145526

0.003854474

As it is in upper tail

As it is two tail test

0.0077

Proportion

Inner City Store

Suburban Store

p(1-p)

p(1-p)

Sample Size

600

500

0.2356

0.1659

Errors

228

105

0.000393

0.000332

P

0.38

0.21

0.000724

0.001666667

1-P

0.62

0.79

0.002

Stdev

150

125

0.026916

0.003666667

the point estimate of the difference between the mean ages of the two populations is x1 - x2

0.17

0.052754

Pooled Estimator

0.302727273

1-p

0.697273

Using 95% confidence and Za/2 5 t.025

1.960

Signification

95%

Standard Error

0.026915918

5%

0.025

Mean Error

0.052754

Confidence Interval

0.117

0.223

Test Statistic

6.110631473

Pvalue

1

4.96188E-10

As it is in upper tail

As it is two tail test

0.0000

  

 

Sample Size(n)

30

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

 

 

Sig1

0.025

0.975

45.72229

Interval Estimate

 

 

Sig2

0.975

0.025

16.04707

102.7508

292.7637

 

 

DF

29

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

 

 

Sample variance(S^2)

162

 

 

 

 

Variance from Hypotheis

100

 

 

 

 

test Statistic[X^2]

46.98

 

 

 

 

P value[Lower Tail]

0.98129563

 

 

P value[upper Tail]

0.01870437

 

 

P value[two Tail]

0.03740875

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphical user interface, text, application, email

Description automatically generated

 

 

 

 

 

0.05

5

 

 

0.95

 

 

 

11.0704977

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1^2

120

n1

41

Df1

40

 

 

S2^2

80

n2

31

Df2

30

 

 

 

 

F =

1.5

 

 

 

 

P-value

0.12564168

 

 

0.87435832

 

 

P-value

0.2513

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

23

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

36.78071

Interval Estimate

 

 

Sig2

0.975

0.025

10.98232

35.88838

120.1932

 

 

DF

22

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

 

 

Sample variance(S^2)

60

 

 

 

 

Variance from Hypotheis

66

 

 

 

 

test Statistic[X^2]

20.00

 

 

 

 

P value[Lower Tail]

0.41696025

 

 

P value[upper Tail]

0.58303975

 

 

P value[two Tail]

0.8339205

 

 

 

 

 

 

 

 

 

 

 

 

The manager of the service department of a local car dealership has noted that the service times of a sample of 15 new automobiles has a standard deviation of 4 minutes. A 95% confidence interval estimate for the variance of service times for all its new automobiles is _____.

 

Sample Size(n)

15

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

26.11895

Interval Estimate

 

 

Sig2

0.975

0.025

5.628726

8.576149

39.79586

 

 

DF

14

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

4

 

 

Sample variance(S^2)

16

 

 

 

 

Variance from Hypotheis

66

 

 

 

 

test Statistic[X^2]

3.39

 

 

 

 

P value[Lower Tail]

0.00185659

 

 

P value[upper Tail]

0.99814341

 

 

P value[two Tail]

0.00371318

 

 

 

 

 

 

 

 

 

 

 

 

The contents of a sample of 26 cans of apple juice showed a standard deviation of 0.06 ounce. We are interested in testing to determine whether the variance of the population is significantly more than .003.

The null hypothesis is _____.

 

Sample Size(n)

26

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

40.64647

Interval Estimate

 

 

Sig2

0.975

0.025

13.11972

0.002214

0.00686

 

 

DF

25

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

0.06

 

 

Sample variance(S^2)

0.0036

 

 

 

 

Variance from Hypotheis

0.003

 

 

 

 

test Statistic[X^2]

30.00

 

 

 

 

P value[Lower Tail]

0.775711

 

 

P value[upper Tail]

0.224289

 

 

P value[two Tail]

0.44857801

 

 

 

 

 

 

 

 

 

 

 

 

The value of F0.01 with 9 numerator and 20 denominator degrees of freedom is _____.

 

 

 

 

 

 

 

 

 

 

 

 

numerator

6

 

 

Denominator

22

 

 

 

 

F =

0.01

 

 

 

 

P-value

3.76

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 11-6

 

S1^2

32

n1

26

Df1

25

 

Sample A

Sample B

 

S2^2

38

n2

16

Df2

15

 

s 2

32

38

 

 

n

24

16

 

F =

0.84210526

Sifnificance =

0.05

 

We want to test the hypothesis that the population variances are equal.

 

 

The null hypothesis _____.

 

P-value

0.65854878

Fcritical

2.279729

 

a. should be rejected

 

0.34145122

 

b. should be revised

 

P-value

1.3171

 

c. should be retested

 

 

 

 

 

 

 

 

 

 

 

d. should not be rejected

The producer of a certain medicine claims that its bottling equipment is very accurate and that the standard deviation of all its filled bottles is 0.1 ounce or less. A sample of 20 bottles showed a standard deviation of .11. The test statistic to test the claim is _____.

 

Sample Size(n)

11

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

20.48318

Interval Estimate

 

 

Sig2

0.975

0.025

3.246973

13.66975

86.23417

 

 

DF

10

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

0.11

 

 

Sample variance(S^2)

28

 

 

0.1

 

 

Variance from Hypotheis

0.01

 

 

 

 

test Statistic[X^2]

28000.00

 

 

 

 

P value[Lower Tail]

1

 

 

P value[upper Tail]

0

 

 

P value[two Tail]

0

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

26

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

40.64647

Interval Estimate

 

 

Sig2

0.975

0.025

13.11972

0.002214

0.00686

 

 

DF

25

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

0.06

 

 

Sample variance(S^2)

0.0036

 

 

0.1

 

 

Variance from Hypotheis

0.003

 

 

 

 

test Statistic[X^2]

30.00

 

 

 

 

P value[Lower Tail]

0.775711

 

 

P value[upper Tail]

0.224289

 

 

P value[two Tail]

0.44857801

 

 

 

 

 

 

 

 

 

 

 

 

The critical value of F for an upper tail test at a 0.05 significance level when there is a sample size of 21 for the sample with the smaller variance and there is a sample size of 9 for the sample with the larger sample variance is _____.

 

 

 

 

 

 

 

 

 

 

 

 

S1^2

32

n1

9

Df1

8

 

 

S2^2

38

n2

21

Df2

20

 

 

 

 

F =

0.84210526

Sifnificance =

0.05

 

 

 

 

P-value

0.57764797

Fcritical

2.447064

 

 

0.42235203

 

 

P-value

1.1553

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

11

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

20.48318

Interval Estimate

 

Consider the following.

 

Sig2

0.975

0.025

3.246973

195.2822

1231.917

 

 

DF

10

 

n = 11

H0σ2 ≤ 425

 

Confidence Coefficient

95%

 

s = 20

Haσ2 > 425

 

Standard Deviation(S)

20

 

 

Sample variance(S^2)

400

 

 

0.1

 

The test statistic for this problem equals

 

Variance from Hypotheis

425

 

 

 

 

test Statistic[X^2]

9.41

 

 

 

 

P value[Lower Tail]

0.50647853

 

 

P value[upper Tail]

0.49352147

 

 

P value[two Tail]

0.98704294

 

 

 

 

 

 

 

 

 

 

 

 

Last year, the standard deviation of the ages of the students at a univeristy was 1.97 years. Recently, a sample of 10 students had a standard deviation of 2.3 years. We are interested in testing to see if there has been a significant change in the standard deviation of the ages of the students at this university.

The test statistic is _____.

 

Sample Size(n)

10

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

19.02277

Interval Estimate

 

 

Sig2

0.975

0.025

2.700389

2.50279

17.63079

 

 

DF

9

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

2.3

 

 

Sample variance(S^2)

5.29

 

 

1.97

 

 

Variance from Hypotheis

3.8809

 

 

 

 

test Statistic[X^2]

12.27

 

 

 

 

P value[Lower Tail]

0.80136895

 

 

P value[upper Tail]

0.19863105

 

 

P value[two Tail]

0.3972621

 

 

 

 

 

 

 

 

 

 

 

 

In a hypothesis test about two population variances, the test statistic F is computed as _____.

a. σ12/σ22

b. 1/ (s12/s22)

c. s12/s22

 

d. 1/(σ12/σ22)

 

Sample Size(n)

23

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

Exhibit 11-8

 

Sig1

0.025

0.975

36.78071

Interval Estimate

 

 

Sig2

0.975

0.025

10.98232

35.88838

120.1932

 

n = 23

H 0σ 2 ≥ 66

 

DF

22

 

s 2 = 60

H aσ 2 < 66

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

 

At a 5% level of significance, the critical value(s) from the table is(are) _____.

 

Sample variance(S^2)

60

 

a. 12.3380

 

 

b. 43.7729

 

Variance from Hypotheis

66

 

c. 33.9244

 

 

d. 10.9823 and 36.7897

 

test Statistic[X^2]

20.00

 

 

 

 

P value[Lower Tail]

0.41696025

 

 

P value[upper Tail]

0.58303975

 

 

P value[two Tail]

0.8339205

 

 

 

 

 

 

 

 

 

 

 

 

The producer of a certain bottling equipment claims that the variance of all its filled bottles is 0.026 or less. A sample of 31 bottles showed a standard deviation of 0.2. The p-value for the test is _____.

 

Sample Size(n)

30

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

45.72229

Interval Estimate

 

 

Sig2

0.975

0.025

16.04707

0.025371

0.072287

 

 

DF

29

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

0.2

 

 

Sample variance(S^2)

0.04

 

 

 

 

Variance from Hypotheis

0.027

 

 

 

 

test Statistic[X^2]

42.96

 

 

 

 

P value[Lower Tail]

0.95411143

 

 

P value[upper Tail]

0.04588857

 

 

P value[two Tail]

0.09177713

 

 

 

 

 

 

 

 

 

 

 

 

A random sample of 26 charge sales showed a sample standard deviation of $46. A 90% confidence interval estimate of the population standard deviation is _____.

 

Sample Size(n)

35

 

 

 

 

 

 

 

 

 

Significance

90%

 

 

10%

Critical

 

 

Sig1

0.05

0.95

48.60237

Interval Estimate

 

Consider the following.

 

Sig2

0.95

0.05

21.66428

308.5035

692.107

 

 

DF

34

 

n = 35

H0σ2 = 350

 

Confidence Coefficient

90%

 

s2 = 441

Haσ2 ≠ 350

 

Standard Deviation(S)

46

 

 

Sample variance(S^2)

441

 

 

 

The test statistic for this problem equals _____.

 

Variance from Hypotheis

350

 

a. 42.8

 

 

b. 27.0

 

test Statistic[X^2]

42.84

 

c. 20

 

 

d. 38.2

 

P value[Lower Tail]

0.85778086

 

 

P value[upper Tail]

0.14221914

 

 

P value[two Tail]

0.28443828

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

26

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

40.64647

Interval Estimate

 

 

Sig2

0.975

0.025

13.11972

0.002214

0.00686

 

 

DF

25

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

0.06

 

 

Sample variance(S^2)

0.0036

 

 

 

 

Variance from Hypotheis

0.003

 

 

 

 

test Statistic[X^2]

30.00

 

 

 

 

P value[Lower Tail]

0.775711

 

 

P value[upper Tail]

0.224289

 

 

P value[two Tail]

0.44857801

 

 

 

 

 

 

 

 

 

 

 

 

Last year, the standard deviation of the ages of the students at UA was 1.81 years. Recently, a sample of 10 students had a standard deviation of 2.1 years. We are interested in testing to see if there has been a significant change in the standard deviation of the ages of the students at UA.

 

Sample Size(n)

10

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

19.02277

Interval Estimate

 

 

Sig2

0.975

0.025

2.700389

2.086447

14.69788

 

 

DF

9

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

2.1

 

 

Sample variance(S^2)

4.41

 

 

1.81

 

 

Variance from Hypotheis

3.2761

 

 

 

 

test Statistic[X^2]

12.12

 

 

 

 

P value[Lower Tail]

0.79309727

 

 

P value[upper Tail]

0.20690273

 

 

P value[two Tail]

0.41380545

 

 

 

 

 

 

 

 

 

 

 

 

The sampling distribution used when making inferences about a single population's variance is a(n) _____ distribution.

a. χ2

b. F

c. t

d. normal

 

Sample Size(n)

16

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

27.48839

Interval Estimate

 

 

Sig2

0.975

0.025

6.262138

264.1115

1159.348

 

Consider the following.

 

DF

15

 

 

Confidence Coefficient

95%

 

n = 16

s = 22

H0σ2 ≤ 584

 

Standard Deviation(S)

22

 

Haσ2 > 584

 

Sample variance(S^2)

484

 

 

1.81

 

 

Variance from Hypotheis

584

 

The test statistic for this problem equals _____.

 

 

a. 0.57

 

test Statistic[X^2]

12.43

 

b. 13.66

 

 

c. 18.10

 

P value[Lower Tail]

0.35388271

 

d. 12.43

 

P value[upper Tail]

0.64611729

 

 

P value[two Tail]

0.70776541

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1^2

30

n1

18

Df1

17

 

 

S2^2

32

n2

12

Df2

11

 

 

 

 

F =

0.9375

Sifnificance =

0.05

 

 

 

 

P-value

0.56180299

Fcritical

2.6851

 

 

0.43819701

 

 

P-value

1.1236

 

 

 

 

 

 

 

 

 

 

 

 

A random sample of 33 charge sales showed a sample standard deviation of $48. A 90% confidence interval estimate of the population standard deviation is _____.

 

Sample Size(n)

33

 

 

 

 

 

 

 

 

 

Significance

90%

 

 

10%

Critical

 

 

Sig1

0.05

0.95

46.19426

Interval Estimate

 

 

Sig2

0.95

0.05

20.07191

1596.042

3673.192

 

 

DF

32

 

 

Confidence Coefficient

90%

 

 

Standard Deviation(S)

48

 

 

Sample variance(S^2)

2304

 

 

1.81

 

 

Variance from Hypotheis

584

 

 

 

 

test Statistic[X^2]

126.25

 

 

 

 

P value[Lower Tail]

1

 

 

P value[upper Tail]

3.868E-13

 

 

P value[two Tail]

7.736E-13

 

 

 

 

 

 

 

 

 

 

 

 

Last year, the standard deviation of the ages of the students at a univeristy was 1.97 years. Recently, a sample of 10 students had a standard deviation of 2.3 years. We are interested in testing to see if there has been a significant change in the standard deviation of the ages of the students at this university.

The test statistic is _____.

 

Sample Size(n)

10

 

 

 

 

 

 

 

 

 

Significance

90%

 

 

10%

Critical

 

 

Sig1

0.05

0.95

16.91898

Interval Estimate

 

 

Sig2

0.95

0.05

3.325113

2.814

14.31831

 

 

DF

9

 

 

Confidence Coefficient

90%

 

 

Standard Deviation(S)

2.3

 

 

Sample variance(S^2)

5.29

 

 

1.97

 

 

Variance from Hypotheis

3.8809

 

 

 

 

test Statistic[X^2]

12.27

 

 

 

 

P value[Lower Tail]

0.80136895

 

 

P value[upper Tail]

0.19863105

 

 

P value[two Tail]

0.3972621

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

12

 

 

 

 

 

 

 

 

 

Significance

90%

 

 

10%

Critical

 

 

Sig1

0.05

0.95

19.67514

Interval Estimate

 

Consider the following.

 

Sig2

0.95

0.05

4.574813

223.6325

961.7879

 

 

DF

11

 

n = 12

H0σ2 ≤ 430

 

Confidence Coefficient

90%

 

s = 20

Haσ2 > 430

 

Standard Deviation(S)

20

 

 

Sample variance(S^2)

400

 

 

1.97

 

The test statistic for this problem equals _____.

 

Variance from Hypotheis

430

 

a. 11.16

 

 

b. 11.83

 

test Statistic[X^2]

10.23

 

c. 10.23

 

 

d. 0.51

 

P value[Lower Tail]

0.49040222

 

 

P value[upper Tail]

0.50959778

 

 

P value[two Tail]

0.98080443

 

 

 

 

 

 

 

 

 

 

 

 

The sampling distribution of the ratio of two independent sample variances taken from normal populations with equal variances is a(n) _____ distribution.

a. t

b. χ2

c. normal

 

d. F

The 99% confidence interval estimate for a population variance when a sample standard deviation of 11 is obtained from a sample of 10 items is _____.

 

Sample Size(n)

10

 

 

 

 

 

 

 

 

 

Significance

99%

 

 

1%

Critical

 

 

Sig1

0.005

0.995

23.58935

Interval Estimate

 

 

Sig2

0.995

0.005

1.734933

46.1649

627.69

 

 

DF

9

 

 

Confidence Coefficient

99%

 

 

Standard Deviation(S)

11

 

 

Sample variance(S^2)

121

 

 

1.97

 

 

Variance from Hypotheis

430

 

 

 

 

test Statistic[X^2]

2.53

 

 

 

 

P value[Lower Tail]

0.02000497

 

 

P value[upper Tail]

0.97999503

 

 

P value[two Tail]

0.04000994

 

 

 

 

 

 

 

 

 

 

 

 

Last year, the standard deviation of the ages of the students at UA was 1.81 years. Recently, a sample of 10 students had a standard deviation of 2.1 years. We are interested in testing to see if there has been a significant change in the standard deviation of the ages of the students at UA.

The test statistic is _____.

 

Sample Size(n)

10

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

19.02277

Interval Estimate

 

 

Sig2

0.975

0.025

2.700389

2.086447

14.69788

 

 

DF

9

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

2.1

 

 

Sample variance(S^2)

4.41

 

 

1.81

 

 

Variance from Hypotheis

3.2761

 

 

 

 

test Statistic[X^2]

12.12

 

 

 

 

P value[Lower Tail]

0.79309727

 

 

P value[upper Tail]

0.20690273

 

 

P value[two Tail]

0.41380545

 

 

 

 

 

 

 

 

 

 

 

 

A sample of 28 elements is selected to estimate a 95% confidence interval for the variance of the population. The χ2 values to be used for this interval estimation are _____.

 

Sample Size(n)

28

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

43.19451

Interval Estimate

 

 

Sig2

0.975

0.025

14.57338

2.7566

8.170375

 

 

DF

27

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

2.1

 

 

Sample variance(S^2)

4.41

 

 

1.81

 

 

Variance from Hypotheis

3.2761

 

 

 

 

test Statistic[X^2]

36.35

 

 

 

 

P value[Lower Tail]

0.89204351

 

 

P value[upper Tail]

0.10795649

 

 

P value[two Tail]

0.21591298

 

 

 

 

 

 

 

 

 

 

 

 

We are interested in testing whether the variance of a population is significantly less than 1.44. The null hypothesis for this test is _____.

 

Sample Size(n)

28

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

43.19451

Interval Estimate

 

 

Sig2

0.975

0.025

14.57338

2.7566

8.170375

 

 

DF

27

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

2.1

 

 

Sample variance(S^2)

4.41

 

 

1.81

 

 

Variance from Hypotheis

3.2761

 

 

 

 

test Statistic[X^2]

36.35

 

 

 

 

P value[Lower Tail]

0.89204351

 

 

P value[upper Tail]

0.10795649

 

 

P value[two Tail]

0.21591298

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1^2

22

n1

10

Df1

9

 

 

S2^2

25

n2

8

Df2

7

 

 

 

 

F =

0.88

Sifnificance =

0.05

 

 

 

 

P-value

0.58097589

Fcritical

3.676675

 

 

0.41902411

 

 

P-value

1.1620

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

14

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

24.7356

Interval Estimate

 

Exhibit 11-5

 

Sig2

0.975

0.025

5.008751

210.2233

1038.183

 

 

DF

13

 

n = 14

H0σ2 ≤ 410

 

Confidence Coefficient

95%

 

s = 20

Haσ2 > 410

 

Standard Deviation(S)

20

 

 

Sample variance(S^2)

400

 

The test statistic for this problem equals _____.

 

1.81

 

a. 13.33

 

Variance from Hypotheis

410

 

b. 12.68

 

 

c. .63

 

test Statistic[X^2]

12.68

 

d. 13.66

 

 

 

P value[Lower Tail]

0.52740924

 

 

P value[upper Tail]

0.47259076

 

 

P value[two Tail]

0.94518152

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the following.

 

S1^2

24

n1

27

Df1

26

 

 

S2^2

27

n2

12

Df2

11

 

Sample A

Sample B

 

 

s2

24

27

 

F =

0.88888889

Sifnificance =

0.05

 

n

14

12

 

 

 

P-value

0.61763023

Fcritical

2.594296

 

 

0.38236977

 

We want to test the hypothesis that population B has a smaller variance than population A.

 

P-value

1.2353

 

 

 

 

 

 

 

 

 

 

 

 

The test statistic for this problem equals _____.

a. 1.13

b. 1.17

c. 0.86

The value of F0.01 with 6 numerator and 22 denominator degrees of freedom is _____.

d. 0.89

 

 

 

 

 

 

 

 

 

 

 

 

numerator

6

 

 

Denominator

22

 

 

 

 

F =

0.01

 

 

 

 

P-value

3.76

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1^2

22

n1

10

Df1

9

 

 

Sample A

Sample B

 

S2^2

25

n2

8

Df2

7

 

s2

22

25

 

 

n

10

8

 

F =

0.88

Sifnificance =

0.05

 

 

 

We want to test the hypothesis that population B has a smaller variance than population A.

 

P-value

0.58097589

Fcritical

3.676675

 

 

0.41902411

 

The test statistic for this problem equals _____.

 

P-value

1.1620

 

 

 

 

 

 

 

 

 

 

 

 

A sample of 20 cans of tomato juice showed a standard deviation of 0.4 ounce. A 95% confidence interval estimate of the variance for the population is _____.

 

Sample Size(n)

20

 

 

 

 

 

 

 

 

 

Significance

95%

 

 

5%

Critical

 

 

Sig1

0.025

0.975

32.85233

Interval Estimate

 

 

Sig2

0.975

0.025

8.906516

0.092535

0.341323

 

 

DF

19

 

 

Confidence Coefficient

95%

 

 

Standard Deviation(S)

0.4

 

 

Sample variance(S^2)

0.16

 

 

1.81

 

 

Variance from Hypotheis

3.2761

 

 

 

 

test Statistic[X^2]

0.93

 

 

 

 

P value[Lower Tail]

3.9385E-10

 

 

P value[upper Tail]

1

 

 

P value[two Tail]

7.8771E-10

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size(n)

27

 

 

 

 

 

 

 

 

 

Significance

90%

 

Consider the following.

 

10%

Critical

 

 

Sig1

0.05

0.95

38.88514

Interval Estimate

 

n = 27

H0σ2 = 650

 

Sig2

0.95

0.05

15.37916

451.9979

1142.846

 

s2 = 676

Haσ2 ≠ 650

 

DF

26

 

 

Confidence Coefficient

90%

 

 

Standard Deviation(S)

46

 

The test statistic for this problem equal

 

Sample variance(S^2)

676

 

 

 

 

Variance from Hypotheis

650

 

 

 

 

test Statistic[X^2]

27.0

 

 

 

 

P value[Lower Tail]

0.59276209

 

 

P value[upper Tail]

0.40723791

 

 

P value[two Tail]

0.81447583

 

 

 

 

 

 

 

 

 

 

 

 

The value of F0.05 with 9 numerator and 15 denominator degrees of freedom is _____.

 

 

 

 

 

 

 

 

 

 

 

 

numerator

9

 

 

Denominator

15

 

 

 

 

F =

0.05

 

 

 

 

P-value

2.59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 









































































































































































































































































































































































































































































































































































Comments

Popular posts from this blog

IS5213 Data Science and Big Data Solutions

WEEK- 2 code  install.packages("dplyr") library(dplyr) Rajeshdf = read.csv('c:\\Insurance.csv') str(Rajeshdf)                        str(Rajeshdf) summary(Rajeshdf) agg_tbl <- Rajeshdf %>% group_by(Rajeshdf$JOB) %>%    summarise(total_count=n(),             .groups = 'drop') agg_tbl a = aggregate( x=Rajeshdf$HOME_VAL, by=list( Rajeshdf$CAR_TYPE), FUN=median, na.rm=TRUE ) a QUIZ 2. What famous literary detective solved a crime because a dog did not bark at the criminal? A). Sherlock Holmes 1.  In the Insurance data set, how many Lawyers are there? A).  1031 3. What two prefixes does the instructor use for variables when fixing the missing values? Select all that apply. A). IMP_ M_ 4. What is the median Home Value of a person who drives a Van? A).  204139 5. In the insurance data set, how many missing (NA) values does the variable AGE have? A) 7   1. What...

GE5103-2 Project Management [Aug 23 Syllabus]

    Some of the advantages of using time boxes and cycles in project coordination efforts include creating urgency, measuring progress, and allowing for predictable measurements. A)        True 2.    Even though most project managers are not contract specialists, they need to understand the process well enough to coordinate with the team. For the current assignment, you are looking at a short-term and small effort with a contractor of just a few hours without significant clarity. Which of the following would be the most applicable contract to use in this situation? A)        Time and materials 3. The project you are working on has had modifications to the plan from the start and even how the project is run. Project governance covers all of the 3 following except: A)        Naming The project manager 4. Of the following, which is most likely a trigger condition defined early in t...

GE5093 Design Thinking All Quizzes

  GE---5093-1D2-FA-2021 - Design Thinking Home My courses 2021-FA GE---5093-1D2-FA-2021 Week 1 Reading Quiz 1 Started on Sunday, October 31, 2021, 2:04 PM State Finished Completed on Sunday, October 31, 2021, 2:30 PM Time taken 25 mins 58 secs Grade 8.00  out of 10.00 ( 80 %) Top of Form Question  1 Correct 1.00 points out of 1.00 Flag question Question text A critical finding of Edward Lorenz related to Design Thinking was: Select one: a. An application of the caterpillar effect b. The idea of deterministic chaos or the "Butterfly Effect" c. Business leaders enjoy chaos d. Statistical modeling of weather was fairly accurate in the long term Feedback Your answer is correct. The correct answer is: The idea of deterministic chaos or the "Butterfly Effect" Question  2 Incorrect 0.00 point...