Skip to main content

MSM6353 Week-3 Session 3 - Python Lab 1

 Session 3 - Python Lab 1

1)Inspecting a DataFrame

When you get a new DataFrame to work with, the first thing you need to do is explore it and see what it contains. There are several useful methods and attributes for this.

  • .head() returns the first few rows (the “head” of the DataFrame).
  • .info() shows information on each of the columns, such as the data type and number of missing values.
  • .shape returns the number of rows and columns of the DataFrame.
  • .describe() calculates a few summary statistics for each column.

homelessness is a DataFrame containing estimates of homelessness in each U.S. state in 2018. The individual column is the number of homeless individuals not part of a family with children. The family_members column is the number of homeless individuals part of a family with children. The state_pop column is the state's total population.

pandas is imported for you.

  • Print the head of the homelessness DataFrame.

·        # Print the head of the homelessness data

·        print(homelessness.head())

 

  • Print information about the column types and missing values in homelessness.

·        # Print the head of the homelessness data

·        print(homelessness.head())

·         

·        # Print information about homelessness

·        print(homelessness.info())

 

  • Print the number of rows and columns in homelessness.

·        # Print the head of the homelessness data

·        print(homelessness.head())

·         

·        # Print information about homelessness

·        print(homelessness.info())

·         

·        # Print the shape of homelessness

·        print(homelessness.shape)

 

  • Print some summary statistics that describe the homelessness DataFrame.

·        # Print the head of the homelessness data

·        print(homelessness.head())

·         

·        # Print information about homelessness

·        print(homelessness.info())

·         

·        # Print the shape of homelessness

·        print(homelessness.shape)

·         

·        # Print a description of homelessness

·        print(homelessness.describe())

 

 

2)Parts of a DataFrame

To better understand DataFrame objects, it's useful to know that they consist of three components, stored as attributes:

  • .values: A two-dimensional NumPy array of values.
  • .columns: An index of columns: the column names.
  • .index: An index for the rows: either row numbers or row names.

You can usually think of indexes as a list of strings or numbers, though the pandas Index data type allows for more sophisticated options. (These will be covered later in the course.)

homelessness is available.

  • Import pandas using the alias pd.
  • Print a 2D NumPy array of the values in homelessness.
  • Print the column names of homelessness.
  • Print the index of homelessness.

# Import pandas using the alias pd

import pandas as pd

 

# Print the values of homelessness

print(homelessness.values)

 

# Print the column index of homelessness

print(homelessness.columns)

 

# Print the row index of homelessness

print(homelessness.index)

 

3)Sorting rows

Finding interesting bits of data in a DataFrame is often easier if you change the order of the rows. You can sort the rows by passing a column name to .sort_values().

In cases where rows have the same value (this is common if you sort on a categorical variable), you may wish to break the ties by sorting on another column. You can sort on multiple columns in this way by passing a list of column names.

Sort on …

Syntax

one column

df.sort_values("breed")

multiple columns

df.sort_values(["breed", "weight_kg"])

By combining .sort_values() with .head(), you can answer questions in the form, "What are the top cases where…?".

homelessness is available and pandas is loaded as pd.

  • Sort homelessness by the number of homeless individuals in the individuals column, from smallest to largest, and save this as homelessness_ind.
  • Print the head of the sorted DataFrame.

# Sort homelessness by individuals

homelessness_ind = homelessness.sort_values("individuals")

 

# Print the top few rows

print(homelessness_ind.head())

 

  • Sort homelessness by the number of homeless family_members in descending order, and save this as homelessness_fam.

# Sort homelessness by descending family members

homelessness_fam = homelessness.sort_values("family_members", ascending=False)

 

print(homelessness_fam.head())

 

  • Sort homelessness first by region (ascending), and then by number of family members (descending). Save this as homelessness_reg_fam.

# Sort homelessness by region, then descending family members

homelessness_reg_fam = homelessness.sort_values(["region", "family_members"], ascending=[True, False])

 

# Print the top few rows

print(homelessness_reg_fam.head())

 

4)Subsetting columns

When working with data, you may not need all of the variables in your dataset. Square brackets ([]) can be used to select only the columns that matter to you in an order that makes sense to you. To select only "col_a" of the DataFrame df, use

df["col_a"]

To select "col_a" and "col_b" of df, use

df[["col_a", "col_b"]]

homelessness is available and pandas is loaded as pd.

  • Create a Series called individuals that contains only the individuals column of homelessness.

# Select the individuals column

individuals = homelessness["individuals"]

 

print(individuals.head())

 

  • Create a DataFrame called state_fam that contains only the state and family_members columns of homelessness, in that order.

# Select the state and family_members columns

state_fam = homelessness[["state", "family_members"]]

 

print(state_fam.head())

 

  • Create a DataFrame called ind_state that contains the individuals and state columns of homelessness, in that order.

# Select only the individuals and state columns, in that order

ind_state = homelessness[["individuals", "state"]]

 

print(ind_state.head())

 

5)Subsetting rows

A large part of data science is about finding which bits of your dataset are interesting. One of the simplest techniques for this is to find a subset of rows that match some criteria. This is sometimes known as filtering rows or selecting rows.

There are many ways to subset a DataFrame, perhaps the most common is to use relational operators to return True or False for each row, then pass that inside square brackets.

dogs[dogs["height_cm"] > 60]

dogs[dogs["color"] == "tan"]

You can filter for multiple conditions at once by using the "bitwise and" operator, &.

dogs[(dogs["height_cm"] > 60) & (dogs["color"] == "tan")]

homelessness is available and pandas is loaded as pd.

·       Filter homelessness for cases where the number of individuals is greater than ten thousand, assigning to ind_gt_10k. View the printed result.

# Filter for rows where individuals is greater than 10000

ind_gt_10k = homelessness[homelessness["individuals"] > 10000]

 

# See the result

print(ind_gt_10k)

 

 

·       Filter homelessness for cases where the USA Census region is "Mountain", assigning to mountain_reg. View the printed result.

# Filter for rows where region is Mountain

mountain_reg = homelessness[homelessness["region"] == "Mountain"]

 

# See the result

print(mountain_reg)

 

·       Filter homelessness for cases where the number of family_members is less than one thousand and the region is "Pacific", assigning to fam_lt_1k_pac. View the printed result.

# Filter for rows where family_members is less than 1000 

# and region is Pacific

fam_lt_1k_pac = homelessness[(homelessness["family_members"] < 1000) & 

                             (homelessness["region"] == "Pacific")]

 

# See the result

print(fam_lt_1k_pac)

 

 

6)Subsetting rows by categorical variables

Subsetting data based on a categorical variable often involves using the or operator (|) to select rows from multiple categories. This can get tedious when you want all states in one of three different regions, for example. Instead, use the .isin() method, which will allow you to tackle this problem by writing one condition instead of three separate ones.

colors = ["brown", "black", "tan"]

condition = dogs["color"].isin(colors)

dogs[condition]

homelessness is available and pandas is loaded as pd.

·       Filter homelessness for cases where the USA census state is in the list of Mojave states, canu, assigning to mojave_homelessness. View the printed result.

# The Mojave Desert states

canu = ["California", "Arizona", "Nevada", "Utah"]

 

# Filter for rows in the Mojave Desert states

mojave_homelessness = homelessness[homelessness["state"].isin(canu)]

 

# See the result

print(mojave_homelessness)

 

 

7)Adding new columns

You aren't stuck with just the data you are given. Instead, you can add new columns to a DataFrame. This has many names, such as transformingmutating, and feature engineering.

You can create new columns from scratch, but it is also common to derive them from other columns, for example, by adding columns together or by changing their units.

homelessness is a DataFrame containing estimates of homelessness in each U.S. state in 2018. The individual column is the number of homeless individuals not part of a family with children. The family_members column is the number of homeless individuals part of a family with children. The state_pop column is the state's total population.

homelessness is available and pandas is loaded as pd.

  • Add a new column to homelessness, named total, containing the sum of the individuals and family_members columns.
  • Add another column to homelessness, named p_homeless, containing the proportion of the total homeless population to the total population in each state state_pop.

# Add total col as sum of individuals and family_members

homelessness["total"] = homelessness["individuals"] + homelessness["family_members"]

 

# Add p_homeless col as proportion of total homeless population to the state population

homelessness["p_homeless"] = homelessness["total"] / homelessness["state_pop"]

 

# See the result

print(homelessness)

 

8)Combo-attack!

You've seen the four most common types of data manipulation: sorting rows, subsetting columns, subsetting rows, and adding new columns. In a real-life data analysis, you can mix and match these four manipulations to answer a multitude of questions.

In this exercise, you'll answer the question, "Which state has the highest number of homeless individuals per 10,000 people in the state?" Combine your new pandas skills to find out.

  • Add a column to homelessness, indiv_per_10k, containing the number of homeless individuals per ten thousand people in each state, using state_pop for state population.
  • Subset rows where indiv_per_10k is higher than 20, assigning to high_homelessness.
  • Sort high_homelessness by descending indiv_per_10k, assigning to high_homelessness_srt.
  • Select only the state and indiv_per_10k columns of high_homelessness_srt and save as result. Look at the result.

# Create indiv_per_10k col as homeless individuals per 10k state pop

homelessness["indiv_per_10k"] = 10000 * homelessness["individuals"] / homelessness["state_pop"] 

 

# Subset rows for indiv_per_10k greater than 20

high_homelessness = homelessness[homelessness["indiv_per_10k"] > 20]

# Sort high_homelessness by descending indiv_per_10k

high_homelessness_srt = high_homelessness.sort_values("indiv_per_10k", ascending=False)

 

# From high_homelessness_srt, select the state and indiv_per_10k cols

result = high_homelessness_srt[["state", "indiv_per_10k"]]

 

# See the result

print(result)

 

9)Mean and median

Summary statistics are exactly what they sound like - they summarize many numbers in one statistic. For example, mean, median, minimum, maximum, and standard deviation are summary statistics. Calculating summary statistics allows you to get a better sense of your data, even if there's a lot of it.

sales is available and pandas is loaded as pd.

  • Explore your new DataFrame first by printing the first few rows of the sales DataFrame.
  • Print information about the columns in sales.
  • Print the mean of the weekly_sales column.
  • Print the median of the weekly_sales column.

# Print the head of the sales DataFrame

print(sales.head())

 

# Print the info about the sales DataFrame

print(sales.info())

 

# Print the mean of weekly_sales

print(sales["weekly_sales"].mean())

 

# Print the median of weekly_sales

print(sales["weekly_sales"].median())

 

10)Summarizing dates

Summary statistics can also be calculated on date columns that have values with the data type datetime64. Some summary statistics — like mean — don't make a ton of sense on dates, but others are super helpful, for example, minimum and maximum, which allow you to see what time range your data covers.

sales is available and pandas is loaded as pd.

  • Print the maximum of the date column.
  • Print the minimum of the date column.

# Print the maximum of the date column

print(sales["date"].max())

 

# Print the minimum of the date column

print(sales["date"].min())

 

11)Efficient summaries

While pandas and NumPy have tons of functions, sometimes, you may need a different function to summarize your data.

The .agg() method allows you to apply your own custom functions to a DataFrame, as well as apply functions to more than one column of a DataFrame at once, making your aggregations super-efficient. For example,

df['column'].agg(function)

In the custom function for this exercise, "IQR" is short for inter-quartile range, which is the 75th percentile minus the 25th percentile. It's an alternative to standard deviation that is helpful if your data contains outliers.

sales is available and pandas is loaded as pd.

  • Use the custom iqr function defined for you along with .agg() to print the IQR of the temperature_c column of sales.

# A custom IQR function

def iqr(column):

    return column.quantile(0.75) - column.quantile(0.25)

    

# Print IQR of the temperature_c column

print(sales["temperature_c"].agg(iqr))

 

  • Update the column selection to use the custom iqr function with .agg() to print the IQR of temperature_c, fuel_price_usd_per_l, and unemployment, in that order.

# A custom IQR function

def iqr(column):

    return column.quantile(0.75) - column.quantile(0.25)

 

# Update to print IQR of temperature_c, fuel_price_usd_per_l, & unemployment

print(sales[["temperature_c", "fuel_price_usd_per_l", "unemployment"]].agg(iqr))

 

  • Update the aggregation functions called by .agg(): include iqr and "median" in that order.

# Create a custom IQR function

def iqr(column):

    return column.quantile(0.75) - column.quantile(0.25)

 

# Print IQR and median of temperature_c, fuel_price_usd_per_l, & unemployment

print(sales[["temperature_c", "fuel_price_usd_per_l", "unemployment"]].agg([iqr, "median"]))

 

12)Cumulative statistics

Cumulative statistics can also be helpful in tracking summary statistics over time. In this exercise, you'll calculate the cumulative sum and cumulative max of a department's weekly sales, which will allow you to identify what the total sales were so far as well as what the highest weekly sales were so far.

A DataFrame called sales_1_1 has been created for you, which contains the sales data for department 1 of store 1. pandas is loaded as pd.

  • Sort the rows of sales_1_1 by the date column in ascending order.
  • Get the cumulative sum of weekly_sales and add it as a new column of sales_1_1 called cum_weekly_sales.
  • Get the cumulative maximum of weekly_sales, and add it as a column called cum_max_sales.
  • Print the date, weekly_sales, cum_weekly_sales, and cum_max_sales columns.

# Sort sales_1_1 by date

sales_1_1 = sales_1_1.sort_values("date")

 

# Get the cumulative sum of weekly_sales, add as cum_weekly_sales col

sales_1_1["cum_weekly_sales"] = sales_1_1["weekly_sales"].cumsum()

 

# Get the cumulative max of weekly_sales, add as cum_max_sales col

sales_1_1["cum_max_sales"] = sales_1_1["weekly_sales"].cummax()

 

# See the columns you calculated

print(sales_1_1[["date", "weekly_sales", "cum_weekly_sales", "cum_max_sales"]])

 

13)Dropping duplicates

Removing duplicates is an essential skill to get accurate counts because often, you don't want to count the same thing multiple times. In this exercise, you'll create some new DataFrames using unique values from sales.

sales is available and pandas is imported as pd.

  • Remove rows of sales with duplicate pairs of store and type and save as store_types and print the head.
  • Remove rows of sales with duplicate pairs of store and department and save as store_depts and print the head.
  • Subset the rows that are holiday weeks using the is_holiday column, and drop the duplicate dates, saving as holiday_dates.
  • Select the date column of holiday_dates, and print.

# Drop duplicate store/type combinations

store_types = sales.drop_duplicates(subset=["store", "type"])

print(store_types.head())

 

# Drop duplicate store/department combinations

store_depts = sales.drop_duplicates(subset=["store", "department"])

print(store_depts.head())

 

# Subset the rows where is_holiday is True and drop duplicate dates

holiday_dates = sales[sales["is_holiday"]].drop_duplicates("date")

 

# Print date col of holiday_dates

print(holiday_dates["date"])

 

14)Counting categorical variables

Counting is a great way to get an overview of your data and to spot curiosities that you might not notice otherwise. In this exercise, you'll count the number of each type of store and the number of each department number using the DataFrames you created in the previous exercise:

# Drop duplicate store/type combinations

store_types = sales.drop_duplicates(subset=["store", "type"])

 

# Drop duplicate store/department combinations

store_depts = sales.drop_duplicates(subset=["store", "department"])

The store_types and store_depts DataFrames you created in the last exercise are available, and pandas is imported as pd.

  • Count the number of stores of each store type in store_types.
  • Count the proportion of stores of each store type in store_types.
  • Count the number of stores of each department in store_depts, sorting the counts in descending order.
  • Count the proportion of stores of each department in store_depts, sorting the proportions in descending order.

# Count the number of stores of each type

store_counts = store_types["type"].value_counts()

print(store_counts)

 

# Get the proportion of stores of each type

store_props = store_types["type"].value_counts(normalize=True)

print(store_props)

 

# Count the number of stores for each department and sort

dept_counts_sorted = store_depts["department"].value_counts().sort_values(ascending=False)

print(dept_counts_sorted)

 

# Get the proportion of stores in each department and sort

dept_props_sorted = store_depts["department"].value_counts(normalize=True).sort_values(ascending=False)

print(dept_props_sorted)

 

15)What percent of sales occurred at each store type?

While .groupby() is useful, you can calculate grouped summary statistics without it.

Walmart distinguishes three types of stores: "supercenters," "discount stores," and "neighborhood markets," encoded in this dataset as type "A," "B," and "C." In this exercise, you'll calculate the total sales made at each store type, without using .groupby(). You can then use these numbers to see what proportion of Walmart's total sales were made at each type.

sales is available and pandas is imported as pd.

  • Calculate the total weekly_sales over the whole dataset.
  • Subset for type "A" stores, and calculate their total weekly sales.
  • Do the same for type "B" and type "C" stores.
  • Combine the A/B/C results into a list, and divide by sales_all to get the proportion of sales by type.

# Calc total weekly sales

sales_all = sales["weekly_sales"].sum()

 

# Subset for type A stores, calc total weekly sales

sales_A = sales[sales["type"] == "A"]["weekly_sales"].sum()

 

# Subset for type B stores, calc total weekly sales

sales_B = sales[sales["type"] == "B"]["weekly_sales"].sum()

 

# Subset for type C stores, calc total weekly sales

sales_C = sales[sales["type"] == "C"]["weekly_sales"].sum()

 

# Get proportion for each type

sales_propn_by_type = [sales_A, sales_B, sales_C] / sales_all

print(sales_propn_by_type)

 

16)Calculations with .groupby()

The .groupby() method makes life much easier. In this exercise, you'll perform the same calculations as last time, except you'll use the .groupby() method. You'll also perform calculations on data grouped by two variables to see if sales differ by store type depending on if it's a holiday week or not.

sales is available and pandas is loaded as pd.

  • Group sales by "type", take the sum of "weekly_sales", and store as sales_by_type.
  • Calculate the proportion of sales at each store type by dividing by the sum of sales_by_type. Assign to sales_propn_by_type.

# Group by type; calc total weekly sales

sales_by_type = sales.groupby("type")["weekly_sales"].sum()

 

# Get proportion for each type

sales_propn_by_type = sales_by_type / sum(sales_by_type)

print(sales_propn_by_type)

 

  • Group sales by "type" and "is_holiday", take the sum of weekly_sales, and store as sales_by_type_is_holiday.

# From previous step

sales_by_type = sales.groupby("type")["weekly_sales"].sum()

 

# Group by type and is_holiday; calc total weekly sales

sales_by_type_is_holiday = sales.groupby(["type", "is_holiday"])["weekly_sales"].sum()

print(sales_by_type_is_holiday)

17)Multiple grouped summaries

Earlier in this chapter, you saw that the .agg() method is useful to compute multiple statistics on multiple variables. It also works with grouped data. You can use built-in functions like min, max, mean, and median.

sales is available and pandas is imported as pd.

  • Get the min, max, mean, and median of weekly_sales for each store type using .groupby() and .agg(). Store this as sales_stats.
  • Get the min, max, mean, and median of unemployment and fuel_price_usd_per_l for each store type. Store this as unemp_fuel_stats.

# For each store type, aggregate weekly_sales: get min, max, mean, and median

sales_stats = sales.groupby("type")["weekly_sales"].agg(["min", "max", "mean", "median"])

 

# Print sales_stats

print(sales_stats)

 

# For each store type, aggregate unemployment and fuel_price_usd_per_l: get min, max, mean, and median

unemp_fuel_stats = sales.groupby("type")[["unemployment", "fuel_price_usd_per_l"]].agg(["min", "max", "mean", "median"])

 

# Print unemp_fuel_stats

print(unemp_fuel_stats)

 

18)Pivoting on one variable

Pivot tables are the standard way of aggregating data in spreadsheets.

In pandas, pivot tables are essentially another way of performing grouped calculations. That is, the .pivot_table() method is an alternative to .groupby().

In this exercise, you'll perform calculations using .pivot_table() to replicate the calculations you performed in the last lesson using .groupby().

sales is available and pandas is imported as pd.

  • Get the mean weekly_sales by type using .pivot_table() and store as mean_sales_by_type.

# Pivot for mean weekly_sales for each store type

mean_sales_by_type = sales.pivot_table(values="weekly_sales", index="type")

 

# Print mean_sales_by_type

print(mean_sales_by_type)

 

  • Get the mean and median of weekly_sales by type using .pivot_table() and store as mean_med_sales_by_type.

# Pivot for mean and median weekly_sales for each store type

mean_med_sales_by_type = sales.pivot_table(values="weekly_sales", index="type", aggfunc=["mean", "median"])

 

# Print mean_med_sales_by_type

print(mean_med_sales_by_type)

 

  • Get the mean of weekly_sales by type and is_holiday using .pivot_table() and store as mean_sales_by_type_holiday.

# Pivot for mean weekly_sales by store type and holiday 

mean_sales_by_type_holiday = sales.pivot_table(values="weekly_sales", index="type", columns="is_holiday", aggfunc="mean")

 

# Print mean_sales_by_type_holiday

print(mean_sales_by_type_holiday)

 

19)Fill in missing values and sum values with pivot tables

The .pivot_table() method has several useful arguments, including fill_value and margins.

  • fill_value replaces missing values with a real value (known as imputation). What to replace missing values with is a topic big enough to have its own course (Dealing with Missing Data in Python), but the simplest thing to do is to substitute a dummy value.
  • margins is a shortcut for when you pivoted by two variables, but also wanted to pivot by each of those variables separately: it gives the row and column totals of the pivot table contents.

In this exercise, you'll practice using these arguments to up your pivot table skills, which will help you crunch numbers more efficiently!

sales is available and pandas is imported as pd.

  • Print the mean weekly_sales by department and type, filling in any missing values with 0.

# Print mean weekly_sales by department and type; fill missing values with 0

print(sales.pivot_table(values="weekly_sales", index="department", columns="type", aggfunc="mean", fill_value=0))

 

  • Print the mean weekly_sales by department and type, filling in any missing values with 0 and summing all rows and columns.

# Print the mean weekly_sales by department and type; fill missing values with 0s; sum all rows and cols

print(sales.pivot_table(values="weekly_sales", index="department", columns="type", fill_value=0, margins=True))

 

20)Setting and removing indexes

pandas allows you to designate columns as an index. This enables cleaner code when taking subsets (as well as providing more efficient lookup under some circumstances).

In this chapter, you'll be exploring temperatures, a DataFrame of average temperatures in cities around the world. pandas is loaded as pd.

  • Look at temperatures.
  • Set the index of temperatures to "city", assigning to temperatures_ind.
  • Look at temperatures_ind. How is it different from temperatures?
  • Reset the index of temperatures_ind, keeping its contents.
  • Reset the index of temperatures_ind, dropping its contents.

# Look at temperatures

print(temperatures.head())

 

# Set the index of temperatures to city

temperatures_ind = temperatures.set_index("city")

 

# Look at temperatures_ind

print(temperatures_ind.head())

 

# Reset the temperatures_ind index, keeping its contents

print(temperatures_ind.reset_index())

 

# Reset the temperatures_ind index, dropping its contents

print(temperatures_ind.reset_index(drop=True))

 

21)Subsetting with .loc[]

The killer feature for indexes is .loc[]: a subsetting method that accepts index values. When you pass it a single argument, it will take a subset of rows.

The code for subsetting using .loc[] can be easier to read than standard square bracket subsetting, which can make your code less burdensome to maintain.

pandas is loaded as pd. temperatures and temperatures_ind are available; the latter is indexed by city.

  • Create a list called cities that contains "London" and "Paris".
  • Use [] subsetting to filter temperatures for rows where the city column takes a value in the cities list.
  • Use .loc[] subsetting to filter temperatures_ind for rows where the city is in the cities list.

# Make a list of cities to subset on

cities = ["London", "Paris"]

 

# Subset temperatures using square brackets

print(temperatures[temperatures["city"].isin(cities)])

 

# Subset temperatures_ind using .loc[]

print(temperatures_ind.loc[cities])

 

22)Setting multi-level indexes

Indexes can also be made out of multiple columns, forming a multi-level index (sometimes called a hierarchical index). There is a trade-off to using these.

The benefit is that multi-level indexes make it more natural to reason about nested categorical variables. For example, in a clinical trial, you might have control and treatment groups. Then each test subject belongs to one or another group, and we can say that a test subject is nested inside the treatment group. Similarly, in the temperature dataset, the city is located in the country, so we can say a city is nested inside the country.

The main downside is that the code for manipulating indexes is different from the code for manipulating columns, so you have to learn two syntaxes and keep track of how your data is represented.

pandas is loaded as pd. temperatures is available.

  • Set the index of temperatures to the "country" and "city" columns, and assign this to temperatures_ind.
  • Specify two country/city pairs to keep: "Brazil"/"Rio De Janeiro" and "Pakistan"/"Lahore", assigning to rows_to_keep.
  • Print and subset temperatures_ind for rows_to_keep using .loc[].

# Index temperatures by country & city

temperatures_ind = temperatures.set_index(["country", "city"])

 

# List of tuples: Brazil, Rio De Janeiro & Pakistan, Lahore

rows_to_keep = [("Brazil", "Rio De Janeiro"), ("Pakistan", "Lahore")]

 

# Subset for rows to keep

print(temperatures_ind.loc[rows_to_keep])

 

23)Sorting by index values

Previously, you changed the order of the rows in a DataFrame by calling .sort_values(). It's also useful to be able to sort by elements in the index. For this, you need to use .sort_index().

pandas is loaded as pd. temperatures_ind has a multi-level index of country and city, and is available.

  • Sort temperatures_ind by the index values.
  • Sort temperatures_ind by the index values at the "city" level.
  • Sort temperatures_ind by ascending country then descending city.

# Sort temperatures_ind by index values

print(temperatures_ind.sort_index())

 

# Sort temperatures_ind by index values at the city level

print(temperatures_ind.sort_index(level="city"))

 

# Sort temperatures_ind by country then descending city

print(temperatures_ind.sort_index(level=["country", "city"], ascending=[True, False]))

 

24)Slicing index values

Slicing lets you select consecutive elements of an object using first:last syntax. DataFrames can be sliced by index values or by row/column number; we'll start with the first case. This involves slicing inside the .loc[] method.

Compared to slicing lists, there are a few things to remember.

  • You can only slice an index if the index is sorted (using .sort_index()).
  • To slice at the outer level, first and last can be strings.
  • To slice at inner levels, first and last should be tuples.
  • If you pass a single slice to .loc[], it will slice the rows.

pandas is loaded as pd. temperatures_ind has country and city in the index, and is available.

  • Sort the index of temperatures_ind.
  • Use slicing with .loc[] to get these subsets:
    • from Pakistan to Philippines.
    • from Lahore to Manila. (This will return nonsense.)
    • from Pakistan, Lahore to Philippines, Manila.

# Sort the index of temperatures_ind

temperatures_srt = temperatures_ind.sort_index()

 

# Subset rows from Pakistan to Philippines

print(temperatures_srt.loc["Pakistan":"Philippines"])

 

# Try to subset rows from Lahore to Manila

print(temperatures_srt.loc["Lahore":"Manila"])

 

# Subset rows from Pakistan, Lahore to Philippines, Manila

print(temperatures_srt.loc[("Pakistan", "Lahore"):("Philippines", "Manila")])

 

25)Slicing in both directions

You've seen slicing DataFrames by rows and by columns, but since DataFrames are two-dimensional objects, it is often natural to slice both dimensions at once. That is, by passing two arguments to .loc[], you can subset by rows and columns in one go.

pandas is loaded as pd. temperatures_srt is indexed by country and city, has a sorted index, and is available.

  • Use .loc[] slicing to subset rows from India, Hyderabad to Iraq, Baghdad.
  • Use .loc[] slicing to subset columns from date to avg_temp_c.
  • Slice in both directions at once from Hyderabad to Baghdad, and date to avg_temp_c.

# Subset rows from India, Hyderabad to Iraq, Baghdad

print(temperatures_srt.loc[("India", "Hyderabad"):("Iraq", "Baghdad")])

 

# Subset columns from date to avg_temp_c

print(temperatures_srt.loc[:, "date":"avg_temp_c"])

 

# Subset in both directions at once

print(temperatures_srt.loc[("India", "Hyderabad"):("Iraq", "Baghdad"), "date":"avg_temp_c"])

 

26)Slicing time series

Slicing is particularly useful for time series since it's a common thing to want to filter for data within a date range. Add the date column to the index, then use .loc[] to perform the subsetting. The important thing to remember is to keep your dates in ISO 8601 format, that is, "yyyy-mm-dd" for year-month-day, "yyyy-mm" for year-month, and "yyyy" for year.

Recall from Chapter 1 that you can combine multiple Boolean conditions using logical operators, such as &. To do so in one line of code, you'll need to add parentheses () around each condition.

pandas is loaded as pd and temperatures, with no index, is available.

  • Use Boolean conditions, not .isin() or .loc[], and the full date "yyyy-mm-dd", to subset temperatures for rows where the date column is in 2010 and 2011 and print the results.
  • Set the index of temperatures to the date column and sort it.
  • Use .loc[] to subset temperatures_ind for rows in 2010 and 2011.
  • Use .loc[] to subset temperatures_ind for rows from August 2010 to February 2011.

# Use Boolean conditions to subset temperatures for rows in 2010 and 2011

temperatures_bool = temperatures[(temperatures["date"] >= "2010-01-01") & (temperatures["date"] <= "2011-12-31")]

print(temperatures_bool)

 

# Set date as the index and sort the index

temperatures_ind = temperatures.set_index("date").sort_index()

 

# Use .loc[] to subset temperatures_ind for rows in 2010 and 2011

print(temperatures_ind.loc["2010-01-01":"2011-12-31"])

 

# Use .loc[] to subset temperatures_ind for rows from Aug 2010 to Feb 2011

print(temperatures_ind.loc["2010-08":"2011-02"])

 

27)Subsetting by row/column number

The most common ways to subset rows are the ways we've previously discussed: using a Boolean condition or by index labels. However, it is also occasionally useful to pass row numbers.

This is done using .iloc[], and like .loc[], it can take two arguments to let you subset by rows and columns.

pandas is loaded as pd. temperatures (without an index) is available.

Use .iloc[] on temperatures to take subsets.

  • Get the 23rd row, 2nd column (index positions 22 and 1).
  • Get the first 5 rows (index positions 0 to 5).
  • Get all rows, columns 3 and 4 (index positions 2 to 4).
  • Get the first 5 rows, columns 3 and 4.

# Get 23rd row, 2nd column (index 22, 1)

print(temperatures.iloc[22, 1])

 

# Use slicing to get the first 5 rows

print(temperatures.iloc[0:5, :])

 

# Use slicing to get columns 3 to 4

print(temperatures.iloc[:, 2:4])

 

# Use slicing in both directions at once

print(temperatures.iloc[0:5, 2:4])

 

28)Pivot temperature by city and year

It's interesting to see how temperatures for each city change over time—looking at every month results in a big table, which can be tricky to reason about. Instead, let's look at how temperatures change by year.

You can access the components of a date (year, month and day) using code of the form dataframe["column"].dt.component. For example, the month component is dataframe["column"].dt.month, and the year component is dataframe["column"].dt.year.

Once you have the year column, you can create a pivot table with the data aggregated by city and year, which you'll explore in the coming exercises.

pandas is loaded as pd. temperatures is available.

  • Add a year column to temperatures, from the year component of the date column.
  • Make a pivot table of the avg_temp_c column, with country and city as rows, and year as columns. Assign to temp_by_country_city_vs_year, and look at the result.

# Add a year column to temperatures

temperatures["year"] = temperatures["date"].dt.year

 

# Pivot avg_temp_c by country and city vs year

temp_by_country_city_vs_year = temperatures.pivot_table(values="avg_temp_c", index=["country", "city"], columns="year")

 

# See the result

print(temp_by_country_city_vs_year)

 

29)Subsetting pivot tables

A pivot table is just a DataFrame with sorted indexes, so the techniques you have learned already can be used to subset them. In particular, the .loc[] + slicing combination is often helpful.

pandas is loaded as pd. temp_by_country_city_vs_year is available.

Use .loc[] on temp_by_country_city_vs_year to take subsets.

  • From Egypt to India.
  • From Egypt, Cairo to India, Delhi.
  • From Egypt, Cairo to India, Delhi, and 2005 to 2010.

# Subset for Egypt to India

print(temp_by_country_city_vs_year.loc["Egypt":"India"])

 

# Subset for Egypt, Cairo to India, Delhi

print(temp_by_country_city_vs_year.loc[("Egypt", "Cairo"):("India", "Delhi")])

 

# Subset for Egypt, Cairo to India, Delhi, and 2005 to 2010

print(temp_by_country_city_vs_year.loc[("Egypt", "Cairo"):("India", "Delhi"), 2005:2010])

 

30)Calculating on a pivot table

Pivot tables are filled with summary statistics, but they are only a first step to finding something insightful. Often you'll need to perform further calculations on them. A common thing to do is to find the rows or columns where the highest or lowest value occurs.

Recall from Chapter 1 that you can easily subset a Series or DataFrame to find rows of interest using a logical condition inside of square brackets. For example: series[series > value].

pandas is loaded as pd and the DataFrame temp_by_country_city_vs_year is available. The .head() for this DataFrame is shown below, with only a few of the year columns displayed:

country

city

2000

2001

2002

2013

Afghanistan

Kabul

15.823

15.848

15.715

16.206

Angola

Luanda

24.410

24.427

24.791

24.554

Australia

Melbourne

14.320

14.180

14.076

14.742

Sydney

17.567

17.854

17.734

18.090

Bangladesh

span translate="no">Dhaka

25.905

25.931

26.095

26.587

  • Calculate the mean temperature for each year, assigning to mean_temp_by_year.
  • Filter mean_temp_by_year for the year that had the highest mean temperature.
  • Calculate the mean temperature for each city (across columns), assigning to mean_temp_by_city.
  • Filter mean_temp_by_city for the city that had the lowest mean temperature.

# Get the worldwide mean temp by year

mean_temp_by_year = temp_by_country_city_vs_year.mean()

 

# Filter for the year that had the highest mean temp

print(mean_temp_by_year[mean_temp_by_year == mean_temp_by_year.max()])

 

# Get the mean temp by city

mean_temp_by_city = temp_by_country_city_vs_year.mean(axis=1)

 

# Filter for the city that had the lowest mean temp

print(mean_temp_by_city[mean_temp_by_city == mean_temp_by_city.min()])

31)Which avocado size is most popular?

Avocados are increasingly popular and delicious in guacamole and on toast. The Hass Avocado Board keeps track of avocado supply and demand across the USA, including the sales of three different sizes of avocado. In this exercise, you'll use a bar plot to figure out which size is the most popular.

Bar plots are great for revealing relationships between categorical (size) and numeric (number sold) variables, but you'll often have to manipulate your data first in order to get the numbers you need for plotting.

pandas has been imported as pd, and avocados is available.

  • Print the head of the avocados dataset. What columns are available?
  • For each avocado size group, calculate the total number sold, storing as nb_sold_by_size.
  • Create a bar plot of the number of avocados sold by size.
  • Show the plot.

# Import matplotlib.pyplot with alias plt

import matplotlib.pyplot as plt

 

# Look at the first few rows of data

print(avocados.head())

 

# Get the total number of avocados sold of each size

nb_sold_by_size = avocados.groupby("size")["nb_sold"].sum()

 

# Create a bar plot of the number of avocados sold by size

nb_sold_by_size.plot(kind="bar")

 

# Show the plot

plt.show()

 

32)Changes in sales over time

Line plots are designed to visualize the relationship between two numeric variables, where each data values is connected to the next one. They are especially useful for visualizing the change in a number over time since each time point is naturally connected to the next time point. In this exercise, you'll visualize the change in avocado sales over three years.

pandas has been imported as pd, and avocados is available.

  • Get the total number of avocados sold on each date. The DataFrame has two rows for each date—one for organic, and one for conventional. Save this as nb_sold_by_date.
  • Create a line plot of the number of avocados sold.
  • Show the plot.

# Import matplotlib.pyplot with alias plt

import matplotlib.pyplot as plt

 

# Get the total number of avocados sold on each date

nb_sold_by_date = avocados.groupby("date")["nb_sold"].sum()

 

# Create a line plot of the number of avocados sold by date

nb_sold_by_date.plot(kind="line")

 

# Show the plot

plt.show()

 

33)Avocado supply and demand

Scatter plots are ideal for visualizing relationships between numerical variables. In this exercise, you'll compare the number of avocados sold to average price and see if they're at all related. If they're related, you may be able to use one number to predict the other.

matplotlib.pyplot has been imported as plt, pandas has been imported as pd, and avocados is available.

  • Create a scatter plot with nb_sold on the x-axis and avg_price on the y-axis. Title it "Number of avocados sold vs. average price".
  • Show the plot.

# Scatter plot of avg_price vs. nb_sold with title

avocados.plot(x="nb_sold", y="avg_price", kind="scatter", title="Number of avocados sold vs. average price")

 

# Show the plot

plt.show()

 

34)Price of conventional vs. organic avocados

Creating multiple plots for different subsets of data allows you to compare groups. In this exercise, you'll create multiple histograms to compare the prices of conventional and organic avocados.

matplotlib.pyplot has been imported as plt and pandas has been imported as pd.

  • Subset avocados for the "conventional" type and create a histogram of the avg_price column.
  • Create a histogram of avg_price for "organic" type avocados.
  • Add a legend to your plot, with the names "conventional" and "organic".
  • Show your plot.

# Histogram of conventional avg_price 

avocados[avocados["type"] == "conventional"]["avg_price"].hist()

 

# Histogram of organic avg_price

avocados[avocados["type"] == "organic"]["avg_price"].hist()

 

# Add a legend

plt.legend(["conventional", "organic"])

 

# Show the plot

plt.show()

 

  • Modify your code to adjust the transparency of both histograms to 0.5 to see how much overlap there is between the two distributions.

# Modify histogram transparency to 0.5

avocados[avocados["type"] == "conventional"]["avg_price"].hist(alpha=0.5)

 

# Modify histogram transparency to 0.5

avocados[avocados["type"] == "organic"]["avg_price"].hist(alpha=0.5)

 

# Add a legend

plt.legend(["conventional", "organic"])

 

# Show the plot

plt.show()

 

  • Modify your code to use 20 bins in both histograms.

# Modify bins to 20

avocados[avocados["type"] == "conventional"]["avg_price"].hist(alpha=0.5, bins=20)

 

# Modify bins to 20

avocados[avocados["type"] == "organic"]["avg_price"].hist(alpha=0.5, bins=20)

 

# Add a legend

plt.legend(["conventional", "organic"])

 

# Show the plot

plt.show()

 

25)Finding missing values

Missing values are everywhere, and you don't want them interfering with your work. Some functions ignore missing data by default, but that's not always the behavior you might want. Some functions can't handle missing values at all, so these values need to be taken care of before you can use them. If you don't know where your missing values are, or if they exist, you could make mistakes in your analysis. In this exercise, you'll determine if there are missing values in the dataset, and if so, how many.

pandas has been imported as pd and avocados_2016, a subset of avocados that contains only sales from 2016, is available.

  • Print a DataFrame that shows whether each value in avocados_2016 is missing or not.
  • Print a summary that shows whether any value in each column is missing or not.
  • Create a bar plot of the total number of missing values in each column.

# Import matplotlib.pyplot with alias plt

import matplotlib.pyplot as plt

 

# Check individual values for missing values

print(avocados_2016.isna())

 

# Check each column for missing values

print(avocados_2016.isna().any())

 

# Bar plot of missing values by variable

avocados_2016.isna().sum().plot(kind="bar")

 

# Show plot

plt.show()

 

36)Removing missing values

Now that you know there are some missing values in your DataFrame, you have a few options to deal with them. One way is to remove them from the dataset completely. In this exercise, you'll remove missing values by removing all rows that contain missing values.

pandas has been imported as pd and avocados_2016 is available.

  • Remove the rows of avocados_2016 that contain missing values and store the remaining rows in avocados_complete.
  • Verify that all missing values have been removed from avocados_complete. Calculate each column that has NAs and print.

# Remove rows with missing values

avocados_complete = avocados_2016.dropna()

 

# Check if any columns contain missing values

print(avocados_complete.isna().any())

 

37)Replacing missing values

Another way of handling missing values is to replace them all with the same value. For numerical variables, one option is to replace values with 0— you'll do this here. However, when you replace missing values, you make assumptions about what a missing value means. In this case, you will assume that a missing number sold means that no sales for that avocado type were made that week.

In this exercise, you'll see how replacing missing values can affect the distribution of a variable using histograms. You can plot histograms for multiple variables at a time as follows:

dogs[["height_cm", "weight_kg"]].hist()

pandas has been imported as pd and matplotlib.pyplot has been imported as plt. The avocados_2016 dataset is available.

  • A list has been created, cols_with_missing, containing the names of columns with missing values: "small_sold", "large_sold", and "xl_sold".
  • Create a histogram of those columns.
  • Show the plot.

# List the columns with missing values

cols_with_missing = ["small_sold", "large_sold", "xl_sold"]

 

# Create histograms showing the distributions cols_with_missing

avocados_2016[cols_with_missing].hist()

 

# Show the plot

plt.show()

 

  • Replace the missing values of avocados_2016 with 0s and store the result as avocados_filled.
  • Create a histogram of the cols_with_missing columns of avocados_filled.

# From previous step

cols_with_missing = ["small_sold", "large_sold", "xl_sold"]

avocados_2016[cols_with_missing].hist()

plt.show()

 

# Fill in missing values with 0

avocados_filled = avocados_2016.fillna(0)

 

# Create histograms of the filled columns

avocados_filled[cols_with_missing].hist()

 

# Show the plot

plt.show()

 

38)List of dictionaries

You recently got some new avocado data from 2019 that you'd like to put in a DataFrame using the list of dictionaries method. Remember that with this method, you go through the data row by row.

date

small_sold

large_sold

"2019-11-03"

10376832

7835071

"2019-11-10"

10717154

8561348

pandas as pd is imported.

  • Create a list of dictionaries with the new data called avocados_list.
  • Convert the list into a DataFrame called avocados_2019.
  • Print your new DataFrame.

# Create a list of dictionaries with new data

avocados_list = [

    {"date": "2019-11-03", "small_sold": 10376832, "large_sold": 7835071},

    {"date": "2019-11-10", "small_sold": 10717154, "large_sold": 8561348},

]

 

# Convert list into DataFrame

avocados_2019 = pd.DataFrame(avocados_list)

 

# Print the new DataFrame

print(avocados_2019)

 

39)Dictionary of lists

Some more data just came in! This time, you'll use the dictionary of lists method, parsing the data column by column.

date

small_sold

large_sold

"2019-11-17"

10859987

7674135

"2019-12-01"

9291631

6238096

pandas as pd is imported.

  • Create a dictionary of lists with the new data called avocados_dict.
  • Convert the dictionary to a DataFrame called avocados_2019.
  • Print your new DataFrame.

# Create a dictionary of lists with new data

avocados_dict = {

"date": ["2019-11-17", "2019-12-01"],

"small_sold": [10859987, 9291631],

"large_sold": [7674135, 6238096]

}

 

# Convert dictionary into DataFrame

avocados_2019 = pd.DataFrame(avocados_dict)

 

# Print the new DataFrame

print(avocados_2019)

 

40)CSV to DataFrame

You work for an airline, and your manager has asked you to do a competitive analysis and see how often passengers flying on other airlines are involuntarily bumped from their flights. You got a CSV file (airline_bumping.csv) from the Department of Transportation containing data on passengers that were involuntarily denied boarding in 2016 and 2017, but it doesn't have the exact numbers you want. In order to figure this out, you'll need to get the CSV into a pandas DataFrame and do some manipulation!

pandas is imported for you as pd. "airline_bumping.csv" is in your working directory.

  • Read the CSV file "airline_bumping.csv" and store it as a DataFrame called airline_bumping.
  • Print the first few rows of airline_bumping.

# Read CSV as DataFrame called airline_bumping

airline_bumping = pd.read_csv("airline_bumping.csv")

 

# Take a look at the DataFrame

print(airline_bumping.head())

 

  • For each airline group, select the nb_bumped, and total_passengers columns, and calculate the sum (for both years). Store this as airline_totals.

# From previous step

airline_bumping = pd.read_csv("airline_bumping.csv")

print(airline_bumping.head())

 

# For each airline, select nb_bumped and total_passengers and sum

airline_totals = airline_bumping.groupby("airline")[["nb_bumped", "total_passengers"]].sum()

 

  • Create a new column of airline_totals called bumps_per_10k, which is the number of passengers bumped per 10,000 passengers in 2016 and 2017.

# From previous steps

airline_bumping = pd.read_csv("airline_bumping.csv")

print(airline_bumping.head())

airline_totals = airline_bumping.groupby("airline")[["nb_bumped", "total_passengers"]].sum()

 

# Create new col, bumps_per_10k: no. of bumps per 10k passengers for each airline

airline_totals["bumps_per_10k"] = airline_totals["nb_bumped"] / airline_totals["total_passengers"] * 10000

 

  • Print airline_totals to see the results of your manipulations.

# From previous steps

airline_bumping = pd.read_csv("airline_bumping.csv")

print(airline_bumping.head())

airline_totals = airline_bumping.groupby("airline")[["nb_bumped", "total_passengers"]].sum()

airline_totals["bumps_per_10k"] = airline_totals["nb_bumped"] / airline_totals["total_passengers"] * 10000

 

# Print airline_totals

print(airline_totals)

 

41)DataFrame to CSV

You're almost there! To make things easier to read, you'll need to sort the data and export it to CSV so that your colleagues can read it.

pandas as pd has been imported for you.

  • Sort airline_totals by the values of bumps_per_10k from highest to lowest, storing as airline_totals_sorted.
  • Print your sorted DataFrame.
  • Save the sorted DataFrame as a CSV called "airline_totals_sorted.csv".

# Create airline_totals_sorted

airline_totals_sorted = airline_totals.sort_values("bumps_per_10k", ascending=False)

 

# Print airline_totals_sorted

print(airline_totals_sorted)

 

# Save as airline_totals_sorted.csv

airline_totals_sorted.to_csv("airline_totals_sorted.csv")

 

Comments

Popular posts from this blog

GE5103-2 Project Management [Aug 23 Syllabus]

    Some of the advantages of using time boxes and cycles in project coordination efforts include creating urgency, measuring progress, and allowing for predictable measurements. A)        True 2.    Even though most project managers are not contract specialists, they need to understand the process well enough to coordinate with the team. For the current assignment, you are looking at a short-term and small effort with a contractor of just a few hours without significant clarity. Which of the following would be the most applicable contract to use in this situation? A)        Time and materials 3. The project you are working on has had modifications to the plan from the start and even how the project is run. Project governance covers all of the 3 following except: A)        Naming The project manager 4. Of the following, which is most likely a trigger condition defined early in t...

GE5093 Design Thinking All Quizzes

  GE---5093-1D2-FA-2021 - Design Thinking Home My courses 2021-FA GE---5093-1D2-FA-2021 Week 1 Reading Quiz 1 Started on Sunday, October 31, 2021, 2:04 PM State Finished Completed on Sunday, October 31, 2021, 2:30 PM Time taken 25 mins 58 secs Grade 8.00  out of 10.00 ( 80 %) Top of Form Question  1 Correct 1.00 points out of 1.00 Flag question Question text A critical finding of Edward Lorenz related to Design Thinking was: Select one: a. An application of the caterpillar effect b. The idea of deterministic chaos or the "Butterfly Effect" c. Business leaders enjoy chaos d. Statistical modeling of weather was fairly accurate in the long term Feedback Your answer is correct. The correct answer is: The idea of deterministic chaos or the "Butterfly Effect" Question  2 Incorrect 0.00 point...

IS5213 Data Science and Big Data Solutions

WEEK- 2 code  install.packages("dplyr") library(dplyr) Rajeshdf = read.csv('c:\\Insurance.csv') str(Rajeshdf)                        str(Rajeshdf) summary(Rajeshdf) agg_tbl <- Rajeshdf %>% group_by(Rajeshdf$JOB) %>%    summarise(total_count=n(),             .groups = 'drop') agg_tbl a = aggregate( x=Rajeshdf$HOME_VAL, by=list( Rajeshdf$CAR_TYPE), FUN=median, na.rm=TRUE ) a QUIZ 2. What famous literary detective solved a crime because a dog did not bark at the criminal? A). Sherlock Holmes 1.  In the Insurance data set, how many Lawyers are there? A).  1031 3. What two prefixes does the instructor use for variables when fixing the missing values? Select all that apply. A). IMP_ M_ 4. What is the median Home Value of a person who drives a Van? A).  204139 5. In the insurance data set, how many missing (NA) values does the variable AGE have? A) 7   1. What...